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Abstract—This paper introduces a simple, systematic and 
effective method for designing Takagi–Sugeno (T–S) fuzzy 
controller utilizing a significantly small training data. Creating 
proper training data is not an easy task and requires spending 
considerable time and resources. The proposed method first uses 
the three-level factorial design to partition the input space. Next 
the Response Surface Methodology (RSM) is used to estimate the 
output spaces. The membership functions are introduced with 
only three variables (min, max and number of membership 
functions). Fuzzy rules are generated with respect to the output 
surfaces and membership functions. The proposed method is 
applied for controlling an inverted pendulum. Simulation results 
demonstrate significant improvement for controlling the inverted 
pendulum. 
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I.  INTRODUCTION 
TAKAGI–SUGENO system has recently become a 

powerful practical engineering tool for controlling complex 
systems. It also has been applied to a variety of industrial 
applications [1] as well as complex robotics applications such 
as biped [2], snake [3] and fish robots [4]. The underlying T–S 
fuzzy control is an interpolation method which partitions the 
input space into fuzzy areas. Each area is approximated by a 
simple local model (often a linear model). The global model is 
obtained by interpolation between the different local models. 
This model permits the approximation of a strongly nonlinear 
function by a simple structure and a limited number of rules. 
The consequents of the fuzzy rules are expressed as analytic 
functions. The choice of the function depends on its practical 
applications. 

Despite the many advantages of T-S controller, its design 
significantly hinders its application [5]. Carrying out design of 
T-S controller is difficult because the explicit structure of T-S 
system is generally unknown, and also due to their inherent 
nonlinear nature. Many efforts have been made to enhance 
systematic and simple design of T-S. In [6] the premise and 
consequent identification are separately performed using fuzzy 
c-means and the orthogonal least squares method, respectively. 
Reference [7] considers the T-S models as fuzzy-neural 
networks and neural-type algorithms are used for model 

learning. Reference [8] developed several approaches that 
attempt to reduce the number of fuzzy rules by assessing their 
degrees of importance using singular value decomposition 
(SVD). They start with an oversized rule base and then remove 
redundant or less important fuzzy rules. Recently, considerable 
number of methods uses genetic Algorithms to build fuzzy 
Sugeno models [9,10]. For instance [11] proposed a genetic-
based algorithm for generating simple and well-defined T-S 
models. 

An important step in designing the T-S controller is 
creating the training data. Most of the above methods require a 
large number of training data for designing. However, data 
generation is not always an easy task. It can require excessive 
time and resources. It is clear that a method which requires less 
number of data and is simpler to apply while producing 
acceptable results, is more valuable. With respect to the 
author's knowledge only a few works have dealt with reducing 
the number of training data. Most researchers are focused on 
simplifying the T-S system by reducing the number of rules 
with similarity measure [12,13]. They assume that sufficient 
data is available and attempt to simplify the system after design 
is completed.  

The primary objective of this research is to develop an 
efficient and simple method for designing T-S controller with 
reduced number of training data. To do this, RSM (Response 
Surface Methodology) is used for modeling the output space. 
RSM is one of the most powerful methods used in DOE 
(Design of Experiments) [14]. It is used for modeling the 
behavior of an unknown system with a reduced number of data 
and experiment. RSM is widely used in modeling and analysis 
of various complex processes [15,16,17]. In this paper, the 
marriage of RSM and T-S controller has made a simpler and 
efficient method which is then applied to controlling a complex 
system.  

The rest of this paper is organized as follows. A section 2 
provides the necessary background information on the Takagi-
Sugeno fuzzy system as well as Response Surface 
Methodology. The main contribution of the paper is presented 
in Sections 3. It describes the proposed systematic design of the 
T-S controller. Section 4 provides an example which 
demonstrates the applicability of the method. Finally, 



         

concluding remarks relating the overall study will be drawn in 
the last section 

II. PRELIMINARIES  

A. Takagi-Sugeno fuzzy controller 
A T-S fuzzy controller is described by a set of fuzzy “IF … 

THEN” rules. A generic T-S rule can be written as follows: 

 Ri : IF x1 is Ai1 AND x2 is Ai2 … AND xr is Air , THEN  

  yi = fi(x1, x2, …, xr),   i=1,2,…,nR (1) 

where Ai1, Ai2,…, Air are fuzzy sets in the antecedent, while 
yi is a crisp function in the consequent. yi is usually a 
polynomial function of input variables. However, it can be any 
function as long as it can appropriately describe the output of 
the model within the fuzzy region specified by the antecedent 
of the rule. When yi is a first-order polynomial, as in this paper, 
the resulting fuzzy inference system is called a first-order 
Sugeno fuzzy model [18]. 

yi = ai1 x1 + ai2 x2 + … + air xr + bi,                 i=1,2,…,nR.  (2) 

where ai1, ai2,…, air and bi are parameters which should be 
identified. The consequents of the T-S controller are 

hyperplanes (r-dimensional linear subspaces) in 
1+ℜr

, 
whereas the if-part of the rule partitions the input space and 
determines the validity of the nR locally linear model for 
different regions of the antecedent space. Since each rule has a 
crisp output, the overall output of the T-S system could be 
obtained via weighted average formula (3). 
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What remains to complete the description of T-S controller 
is a method to estimate parameters ai1, ai2,…, air and bi  of the 
model shown in (2). In the next section Response Surface 
Methodology [19] is utilized in order to provide estimates for 
the model parameters. 

B. Response surface methodology 
Response surface methodology (RSM) was invented by 

Box and Wilson in 1951 [20] and has been applied in a wide 
variety of industrial setting and such as, chemical, 
semiconductor and electronic manufacturing, machining and 
metal cutting processes. RSM is a collection of mathematical 
and statistical techniques that are used to model and analyze 
engineering applications. RSM provides an output response 
surface that describes the overall behavior of the input 
variables. 

In this study, the standard procedure for RSM has been 
modified in a way to be used with T-S system. It consists of the 
following steps: 

Step 1. Design and conduct a series of experiments to get 
adequate and reliable measurements of the response output 
(e.g. orthogonal array experiment). 

Step 2. Develop best fittings mathematical model for the 
first order response surface. 

The relationship between the dependent y (response output) 
and input variables (x1, x2, x3, . . .) may be known exactly of the 
form 

 y = f(x1, x2, x3, . . .) + ε (4) 

Where ε represents the model error, measurement error and 
other variations.  f is a first or second order polynomial which 
is the empirical or response surface model. The successful 
application of RSM relies on the identification of a suitable 
approximation for f . This will generally be a first order model 
of the form 

 f = β0 + β1 x1+ … + βk xk  (5) 

The response surface methodology is intimately connected 
to regression analysis. For example when considering the first 
order model, the β terms comprise the unknown parameter set 
which can be estimated by collecting experimental system data. 
This data can either be sourced from physical experiments or 
from previously designed dynamic computer models. The 
parameter set can be estimated by regression analysis based 
upon the experimental data. The method of least squares is 
typically used to estimate, β's, the regression coefficients. 

III. PROPOSED METHOD  
This section investigates the general procedure for 

controlling the systems using the proposed method. In order to 
better describe the method, first a simple model having two 
inputs and one output is selected. It is worth noting that the 
proposed method can be generalized to higher dimensional 
systems. The general steps are defined as following. 

A. Establish the upper and lower margins for the inputs  
The assignment process to define the upper and lower 

margins can be intuitive or it can be based on some algorithmic 
or logical operation. It is however, usually derived through 
understanding and prior knowledge about the system. For 
example, if temperature is used as an input variable to define 
the range of human comfort we get one range, and if 
temperature is used to define the range of safe operating 
temperature for a steam turbine we get another range. If prior 
knowledge about the system is not available the designer may 
need to conduct a series of baseline experiments to help 
establish these margins [14]. This may be viewed as an 
algorithmic or logical approach. 

B. Defining fuzzy membership functions 
The choice of membership functions will help define output 

surface which itself is made of combining multiple surfaces. In  



         

 
Figure 1.  Membership functions 

order to insure smooth transition among these surfaces, the 
number of membership function must be even, same type and 
input domain must be equally divided (Fig. 1). 

C. Training data 
Having an appropriate set of input-output training data is 

one of the most important factors in designing T-S system. This 
data should explain the behavior of unknown system. However, 
creating data is not an easy task and requires spending 
excessive time and resources. The main goal of the proposed 
method is to design a suitable system which uses the least 
number of training data. If n indicates the number of inputs, the 
total number of required data is computed by (6). 

 Total number of data = 3n (6) 

The required number of data in this method is the same as a 
three-level factorial design [14]. Each input has three levels 
(low, medium and high). For a system with two inputs, the 
input space is divided as shown in Fig. 2. The star points 
indicate the location in input space where experiments are 
conducted. 

D. Consequents part of the fuzzy rules 
RSM is used to construct the consequents part of the fuzzy 

rules in T-S fuzzy system. The input domain is divided into 
four sections. Each section is represented by a first order 
surface (RSM1- RSM4). Surfaces are formed through four data  
 

 
Figure 2.  Treatment combination in a two input (32) system 

 
Figure 3.  Relationship between inputs and output 

with the aid of RSM. If x1 and x2 are first and second input 
variables and aij are constant parameters, then the four surfaces 
are defined by (7).  
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Fig. 3 will clearly illustrate the relationship between inputs and 
output. 

E. Fuzzy rules and deffuzification 
Assuming six membership functions for each input, as in 

Fig. 3, the fuzzy rules for this system are given in Table І. 
Finally, the weighted average method is employed to defuzzify 
the output variable (3).  

IV. NUMERICAL EXAMPLE USING THE TEMPLATE 
In this section, we demonstrate the effectiveness of our 

approach by showing results of controlling the inverted 
pendulum around its unstable equilibrium point. 

A. Inverted pendulum  
The inverted pendulum is a highly nonlinear and unstable 

system. It is therefore often used as a benchmark for verifying 
the performance and effectiveness of new control methods. The 
system consists of an inverted pole hinged on a cart which is  
 

TABLE I.  FUZZY RULES 

x2    
x1 VVS VS S B VB VVB 

VVS RSM3 RSM3 RSM3 RSM4 RSM4 RSM4 

VS RSM3 RSM3 RSM3 RSM4 RSM4 RSM4 
S RSM3 RSM3 RSM3 RSM4 RSM4 RSM4 
B RSM2 RSM2 RSM2 RSM1 RSM1 RSM1 
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Figure 4.  Inverted pendulum 

free to move in the horizontal direction. The inverted pendulum 
inherently has two equilibria, one of which is stable while the 
other is unstable. The stable equilibrium corresponds to a state 
in which the pendulum is pointing downwards. In the absence 
of any control force, the system will naturally return to this 
state. The unstable equilibrium corresponds to a state in which 
the pendulum points strictly upwards and, thus, requires a 
control force to maintain this position. The basic control 
objective of the inverted pendulum problem is to maintain the 
unstable equilibrium position when the pendulum initially 
starts with some nonzero angle from the vertical position. An 
inverted pendulum is shown in Fig. 4. The nonlinear dynamical 
equations are given by (8) [21]. 
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where θ and θ  are the angular displacement and angular 
velocity of the pole, g (acceleration due to the gravity) is 9.8 
m/s2’, M (mass of the cart) is 1 kg , m (mass of the pole) is 0.1 
kg , l (half length of the pole) is 0.5m and F is the application 
force in Newton. F is determined by the controller to bring the 
pole into equilibrium position. θ(deg) and θ  (deg/s) are the 
controller inputs and are varied within [-20, 20] and [-70, 70] 
respectively. The boundary conditions can be chosen by the 
designer according to feasible domains of input variables [22]. 
Six membership functions are assumed for each input variable 
and are divided equally between the two limits (Fig. 5).  

The controller has two inputs, therefore, a three-level 
factorial design requires having nine training data set (6). With 
respect to system dynamics and expert knowledge, forces for 
specific inputs conditions may be selected as in Fig. 6. 

Four linear surfaces defined in (7) can now be formed 
through the use of RSM. Results are shown in (9). The order of 
numbering is inspired by Fig. 3. 
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Figure 5.  Membership functions for inverted pendulum problem 
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Figure 6.  Input-output training data 
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Figure 7.  Control surface 

The fuzzy rules are listed in Table І. The overall response 
of the system is shown in Fig. 7. Performance of the controller 
under various initial conditions is evaluated. The output 
responses are plotted in Fig. 8. This Figure indicates that the 
controller performs well even with a large deviation (-71.4o ≤ θ 
≤ 67.9o) from the equilibrium point. It should be noted that 
these large deviations do not fall into the region of the training 
data set (-20o ≤ θ ≤ 20o). This demonstrates the robustness of 
the developed fuzzy control system with respect to unseen 
initial conditions [22]. Next, a comparison is performed with 
the fuzzy controller proposed by Y. L. Sun et al. [23]. 
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Figure 8.  The response of the system  
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Figure 9.  Comparison between two controller 

Results indicate that our proposed controller significantly 
performances better than [23] (Fig. 9). Furthermore, the 
controller proposed by [23] becomes unstable after 41.83o. Our 
proposed controller not only can stabilize the system faster than 
the [23] controller, but also as shown in Fig. 8, remains stable 
for a significantly larger deviations from vertical, up to 67.9o. 

V. CONCLUSIONS 
We proposed a simple systematic procedure for design of 

T-S fuzzy controller, based on Response Surface Methodology.  
Membership functions and fuzzy rules were defined in a 
straightforward manner. The significance contribution of the 
study is the reduction of training data required for designing the 
T-S fuzzy controller while obtaining good system performance. 
The systematic approach facilitates conducting the T-S design 
in comparison with other methods.  

To demonstrate the effectiveness, the proposed method was 
applied to control of an inverted pendulum. Results 
demonstrated a significant performance improvement. 
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