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Abstract

Let {X,,, n > 1} be a stationary sequence of random variables with survival
function F'(z) = P[X; > z]. The empirical survival function F,,(z) based on
X1, X, ..., X,, is proposed as an estimator for F,(z). We suppose that the
process is strongly mixing and we show strong consistency and pointwise as
well as uniform of F},(x) are depended on the behavior of a special quadratic
characteristic.
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1 Introduction

Let {X,, n > 1} be a stationary sequence of random variables with distribution
function F'(x), or equivalently, survival function F(z) = P[X; > z|. Consider the
estimator F,,(x) defined by

F(w) = 3" Vi) (1.1)

where
1, X; >z,

Yi(x) :{ 0 ., otherwise.

'Mathematics Subject Classification (2000):60F15

(1.2)
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We propose F,(r) as an estimator for F'(x) and study it. In this paper we discuss

the strong consistency, pointwise and uniform of F,(z). These results are useful in
the study of kernel-type density and failure rate estimators of the unknown density
and failure rate function. Bagai and Prakasa Rao (1991) proposed F(x) and studied
strong consistensy of it for sequence of associated random variables. Doosti and Zarei
(2006) extended their results to negatively associated case.
If we want the survival function estimator (1.1) for a stochastic process to attain
the same result as for the associated, negatively associated and m-dependent cases,
we have to impose certain weak dependence conditions on the considered process
{Xn, n > 1} defined on the (Q,X, P). Let NJ™ denote the o-algebra generated by
the events

{Xk S Ak, X, € Am}

We consider the following classical mixing conditions:
1. strong mizing (s.m.), also called a-mixing,

sup sup |P(AB) — P(A)P(B)| = a(s) - 0 as s — o0,
m AENT,BEN, |

2. complete regularity (c.r.), also called (-mixing,

sup E{Vargenz, |P(BINT") = P(B)||| = 5(s) = 0 as s — oo,

m—+s

3. uniformly strong mizing (u.s.m.), also called ¢-
P(AB) — P(A)P(B
o aplPUB) - PPE)
m  AeN[",P(A)>0,BEN, P(A)

=¢(s) =0 as s — oo,

4. p-mizing

sup sup Ycorr(X,Y)|=p—0 s— oc.
m XeL2(N]"),YeL2(NP

m-—+s

Following (Davydov, 1973) we denote varacrpu(A) the total variation of the restric-
tion of the measure p defined on some o-algebra N to the o-algebra F. We call
the corresponding values «(s),3(s) and ¢(s) the s.m., c.r. and u.s.m, coefficients,
respectively.

Moreover, we will show that under certain conditions of weak dependence (more pre-
cisely, under strong mixing conditions) the rate of convergence of wavelet estimators
is the same (up to a constant) as for the independent case. As we will see, for the
estimators to attain the ”"independent” rates of convergence, we should require the
stochastic process to satisfy some local regularity conditions.



2 The empirical survival function

First, we present a bound for the moment of order p of the sum of N random variables
which depends on the second moment and mixing coefficients. This bound constitutes
the basis of the main results of this paper - Theorems 1,2 and 3. This is a Rosenthal-
type inequality. We suppose that (§;) is a strong mixing sequence of real random
variables on the probability space (€2, X, P). In Lemma 1, let «() denote the strong
mixing coefficient associated with (&;).

Lemma 1. (Leblance (1996)) Let co > p > 2 and &, ..., &, be a sequence of real-
valued random variable such that E(&) = 0, [|&i]lee < S, and E(&?) < 0% Then
there exists C' such that:

(Y&l < C{(7)Po} + 70718y~ + SPPa(l)),
i=1

where

u+i—1
1€ N,2<1<n/2,0f =max{ max 0¢>(I), max o2(l — 1)} and o>(l) = E( Z D

1<u<n 1<u<n

In what follows, «(l) is the strong mixing coefficient defined in the introduction. We
denote by Ey the mathematical expectation w.r.t, the law of the process and

u+l—1
2 _ 2 207 2 u 2
op =, max max(c,(l),o,(l—1)), au(Z)_EAZ(K EY;)).

Theorem 1. Let {X,, n > 1} be a stationary sequence of random variables with
bounded continuous density for X;. Suppose that there exist constants o > 1 and
Cq such that for any I, a(l) < c,a™!. Furthermore, suppose that there is a function
g with g(I) > G(G is a positive constant), such that for any | = O(In(n)), of <
lg(1). Then for some r > 1, there exists a constant C' > 0 such that, for every ¢ > 0 ,

sup P[|F,(z) — F(x)| > ¢] < Ce ™| |™" for everyn > 1.

n
g(In(n))
Theorem 2. Let {X,, n > 1} be a stationary sequence of random variables with

bounded continuous density for X;. Suppose that «a(l) < c,l™*, « > r for any
l € N,2<1<n/2 Letusset 0 <y <1 and suppose that there is a function g with



g(l) > G(G is a positive constant), such that for any | = O(n*), o7 < lg(l). Then for
some 1 > 1, there exists a constant C' > 0 such that, for every ¢ > 0 ,
n
g(n*)
Theorems 1 and 2 are simple corollaries of the following result.

Proposition 1. Let {X,,, n > 1} be a stationary sequence of random variables with
bounded continuous density for X;. Then for some r > 1, there exists a constant
C > 0 such that, for every ¢ > 0 |

sup P[|F, () — F(x)] > e] < Ce ™ {n "o 17" 4+ n 212367 + a(l)}

sup P[|F, () — F(x)] > ¢] < Ce™] 7" for every n > 1.

Proof. By using Markov inequality, we get that for every € > 0,
sup P[|F,(z) — F(z)| > ¢] = sup P[(Fn(z) — F(x))*" > ¥

< swp{(ne) B} (V- EV)TY (21)

i=1
to complete the proof, it is sufficient to estimate E|>.; (Y; — EY;)|*". Denote

& =Y, — EY;. Note that ||§]]e < 2 and E{; = 0. Hence applying the Lemma 1 we
have

B Y (Yi = BY)P < C{(3) 07" + ot + na(l)}. (2:2)

i=1
By substituting (2.2) in (2.1), we obtain the desired result. 0
Proof of Theorem 1 and 2. To obtain the results it is sufficient to balance the
terms in the upper bound (2.1) by choosing the parameters. 0O

Remark.In the case of independent random variables, o7 = O(l). Moreover,
in the dependent case a rough bound o7 = O(I?) can be easily obtained. If some
additional conditions are imposed on the process (X;), the bound o7 = O(l) can be
achieved (see Proposition 2). Let us consider the following condition:

C, :a7=0().
When the condition C, is satisfied, the same rate as for the associated case is attained.

Theorem 3. Let {X,, n > 1} be a stationary sequence of random variables
with bounded continuous density for X;. If assumption C, is satisfied then for some
r > 1, there exists a constant C' > 0 such that, for every € > 0 ,

sup P[|F,(z) — F(x)| > ¢] < Ce™?'n™"
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Corollary 1. Under the conditions of Theorem 3 for every z,
F.(x) — F(z) a.s. as n — oo.
Proof. For » > 1 observe that
D PlFu(z) = F(x)| >¢] <Ce™ > n" < oo
n=1 n=1

The result then follows by using the Borel-Contelli Lemma. 0O
Next we ontaiend a version of Glivenko-Cantelli Threorem valid for p-mixing random
variables. The proof follows along the lines of analogous result for associated of
random variables (Bagai and Prakasa Rao 1991).

Theorem 4. Let {X,,, n > 1} be a stationary sequence of random variables satisfying
the conditions of Theorem 3. Then for any compact subset J C R,

sup[|F(2) — F(z)|: 2€J)—0 as as n — o00.

Proof. Let K; and K5 be chosen such that J C [Ky, K5| into b, sub-intervals of
length d,, — 0 where {0, } is chosen such that

Zé;ln_r < 0. (2.3)

such a choice of {4, } is possible. For instance, choose 6, = n~? where 0 < 6 < r — 1.
Note that b, < C§ L.
Let I; = (Tnj, Tnj+1), J=1,...,b, = N, where

Kl =Tnl < Tp2 < .. <TpNt1 = KQ,
with
Tnj+1 — Tnj < (Sn for 1 Sj < N.
Then for z € I,,;, j7=1,2,...,N we have
F(zp41) < F(x) < F(an),

and

Hence



< Fu(@) = F(z) < [Fu(@n,) = F(an)] + [F(zn,) — F(z)].

Therefore
sup[|F () — F(z)|: x€J] < sup[|F,(z) — F(2)|: K <z < Ky
S max [Fu(eng) = F(zay)l
+ lrgjaéﬁlF(xnjH) — F(zp,551)]
b o) =)
+ max sup |F(2,;11) — F(z)]. (2.4)

1<G<N ger,,

Now by the mean value theorem for z,, ; < u* < z we have

F(tn;) — F(z) = F(z) = F(ty)
= (2= ;) () (2.5)

. Since f, the density of X; is bounded by the hypothesis, it follows that there exists
a constant C' > 0 such that

|F(20,5) — F(2)| < C6,, |F(2n,j11) — F(2)] < C6,,
for 1 <j < N and z € I,;. Then for ¢ > 0, choose n = n(e) such that
1
From (2.4) and (2.5), we get, for n < n(e),

Plsup |, (2) — F(x)| > ¢] < Plmax |F,(z,,) — F(z, )| > 15]

z€J 1<j<N 3

_ _ 1
+ Plmax [Fng) = Flong)| > 5¢)

IN

N _ 1
> PlFu(@nj1) = F(xng)| > 3¢
j=1

N
_ _ 1
+ Y PlFa(#n 1) — Flan,)| > gﬁ]
j=1

CNe ?n™"
Ce ?byn™" (by Theorem 3)
S 06—27"57:171—7"

The result follows by using (2.3) and Borel-Cantelli Lemma. 0
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2.1 Discussion of condition C,

We study the condition C, for some processes. Consider the following conditions:
M1 : The process is p-mixing and Y.~ p(t) < R < .

M2 : The process is ¢-mixing and »_,~, ¢(t) < ¢ < oco.

Comment.Since the inequality p(t) < 2(¢(t))'/? holds (see Doukhan, 1994), M2
implies M1. For Gaussian processes ¢-mixing is equivalent to m-dependence (see
Ibragimov and Linnik, 1971, Section 1), whereas p-mixing is equivalent to a-mixing
(see Kolmogorov and Rozanov, 1960, Section 2.1). If the process (X,,) is p-mixing,
we obtain:

Proposition 2.Let (X,,n > 1) be a stochastic process on (R). Suppose that X,
admits a bounded marginal density which is common for all n. If assumption (M1)
is satisfied then there exists a constant G such that for any I, o7 < GI.

Proof.We use the decomposition

u+l—1
ou(l) = B() (Yi-EY)
u+l717
< Y EY;i-EY,)’+ ) [Cou(Y,, V)
i=u u<m<t<l+u—1

The first term in above can be estimated as follows
Ty < 4. (2.7)

To bound the term T we apply a p-mixing covariance inequality (see Doukhan (1994),
section 1.2.2.),i.e.,

[Cov(Yon, Ya)| < 20(t —m)(EY)V2(EY?)? < 2p(t — m).

We obtain
+u—2 l+u—1

T,<2 ) Y plt—m)<2.RI (2.8)

m=u t=m+1

By substituting the bounds (2.7) and (2.8) in (2.6), proposition will be proved.
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