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Abstract

Let {Xn, n ≥ 1} be a stationary sequence of random variables with survival
function F̄ (x) = P [X1 > x]. The empirical survival function F̄n(x) based on
X1, X2, ..., Xn is proposed as an estimator for F̄n(x). We suppose that the
process is strongly mixing and we show strong consistency and pointwise as
well as uniform of F̄n(x) are depended on the behavior of a special quadratic
characteristic.
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1 Introduction

Let {Xn, n ≥ 1} be a stationary sequence of random variables with distribution
function F (x), or equivalently, survival function F̄ (x) = P [X1 > x]. Consider the
estimator F̄n(x) defined by

F̄n(x) =
1

n

n∑
i=1

Yi(x) (1.1)

where

Yi(x) =

{
1 , Xi > x,
0 , otherwise.

(1.2)

1Mathematics Subject Classification (2000):60F15

1



We propose F̄n(x) as an estimator for F̄ (x) and study it. In this paper we discuss
the strong consistency, pointwise and uniform of F̄n(x). These results are useful in
the study of kernel-type density and failure rate estimators of the unknown density
and failure rate function. Bagai and Prakasa Rao (1991) proposed F̄ (x) and studied
strong consistensy of it for sequence of associated random variables. Doosti and Zarei
(2006) extended their results to negatively associated case.
If we want the survival function estimator (1.1) for a stochastic process to attain
the same result as for the associated, negatively associated and m-dependent cases,
we have to impose certain weak dependence conditions on the considered process
{Xn, n ≥ 1} defined on the (Ω,ℵ, P ). Let Nm

k denote the σ-algebra generated by
the events

{Xk ∈ Ak, ..., Xm ∈ Am}.
We consider the following classical mixing conditions:
1. strong mixing (s.m.), also called α-mixing,

sup
m

sup
A∈Nm

1 ,B∈N∞m+s

|P (AB)− P (A)P (B)| = α(s) → 0 as s →∞,

2. complete regularity (c.r.), also called β-mixing,

sup
m

E{V arB∈N∞m+s
|P (B|Nm

1 )− P (B)|‖ = β(s) → 0 as s →∞,

3. uniformly strong mixing (u.s.m.), also called φ-

sup
m

sup
A∈Nm

1 ,P (A)>0,B∈N∞m+s

|P (AB)− P (A)P (B)|
P (A)

= φ(s) → 0 as s →∞,

4. ρ-mixing

sup
m

sup
X∈L2(Nm

1 ),Y ∈L2(N∞m+s

)|corr(X, Y )| = ρ → 0 s →∞.

Following (Davydov, 1973) we denote varA∈Fµ(A) the total variation of the restric-
tion of the measure µ defined on some σ-algebra N to the σ-algebra F . We call
the corresponding values α(s), β(s) and φ(s) the s.m., c.r. and u.s.m, coefficients,
respectively.
Moreover, we will show that under certain conditions of weak dependence (more pre-
cisely, under strong mixing conditions) the rate of convergence of wavelet estimators
is the same (up to a constant) as for the independent case. As we will see, for the
estimators to attain the ”independent” rates of convergence, we should require the
stochastic process to satisfy some local regularity conditions.
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2 The empirical survival function

First, we present a bound for the moment of order p of the sum of N random variables
which depends on the second moment and mixing coefficients. This bound constitutes
the basis of the main results of this paper - Theorems 1,2 and 3. This is a Rosenthal-
type inequality. We suppose that (ξi) is a strong mixing sequence of real random
variables on the probability space (Ω,ℵ, P ). In Lemma 1, let α(l) denote the strong
mixing coefficient associated with (ξi).
Lemma 1. (Leblance (1996)) Let ∞ > p ≥ 2 and ξ1, ..., ξn be a sequence of real-
valued random variable such that E(ξi) = 0, ‖ξi‖∞ < S, and E(ξ2

i ) ≤ σ2. Then
there exists C such that:

E(|
n∑

i=1

ξi|p) ≤ C{(n
l
)p/2σp

l +
n

l
σ2

l (lS)p−2 + Spnpα(l)},

where

l ∈ N, 2 ≤ l ≤ n/2, σ2
l = max{max

1≤u≤n
σ2

u(l), max
1≤u≤n

σ2
u(l − 1)} and σ2

u(l) = E(
u+l−1∑
i=u

ξi)
2.

In what follows, α(l) is the strong mixing coefficient defined in the introduction. We
denote by Ef the mathematical expectation w.r.t, the law of the process and

σ2
l = max

1≤u≤n−l+1
max(σ2

u(l), σ
2
u(l − 1)), σ2

u(l) = Ef (
u+l−1∑
i=u

(Yi − EYi))
2.

Theorem 1. Let {Xn, n ≥ 1} be a stationary sequence of random variables with
bounded continuous density for X1. Suppose that there exist constants α > 1 and
cα such that for any l, α(l) ≤ cαα−1. Furthermore, suppose that there is a function
g with g(l) ≥ G(G is a positive constant), such that for any l = O(ln(n)), σ2

l ≤
lg(l).Then for some r > 1, there exists a constant C > 0 such that, for every ε > 0 ,

sup
x

P [|F̄n(x)− F̄ (x)| > ε] ≤ Cε−2r[
n

g(ln(n))
]−r for every n ≥ 1.

Theorem 2. Let {Xn, n ≥ 1} be a stationary sequence of random variables with
bounded continuous density for X1. Suppose that α(l) ≤ cαl−α, α ≥ r for any
l ∈ N, 2 ≤ l ≤ n/2. Let us set 0 < µ < 1 and suppose that there is a function g with
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g(l) ≥ G(G is a positive constant), such that for any l = O(nµ), σ2
l ≤ lg(l). Then for

some r > 1, there exists a constant C > 0 such that, for every ε > 0 ,

sup
x

P [|F̄n(x)− F̄ (x)| > ε] ≤ Cε−2r[
n

g(nµ)
]−r for every n ≥ 1.

Theorems 1 and 2 are simple corollaries of the following result.
Proposition 1. Let {Xn, n ≥ 1} be a stationary sequence of random variables with
bounded continuous density for X1. Then for some r > 1, there exists a constant
C > 0 such that, for every ε > 0 ,

sup
x

P [|F̄n(x)− F̄ (x)| > ε] ≤ Cε−2r{n−rσ2r
l l−r + n−2r+1l2r−3σ2

l + α(l)}

Proof. By using Markov inequality, we get that for every ε > 0,

sup
x

P [|F̄n(x)− F̄ (x)| > ε] = sup
x

P [(F̄n(x)− F̄ (x))2r > ε2r]

≤ sup
x
{(nε)−2rE|

n∑
i=1

(Yi − EYi)|2r} (2.1)

to complete the proof, it is sufficient to estimate E|
∑n

i=1(Yi − EYi)|2r. Denote
ξI = Yi − EYi. Note that ||ξi||∞ < 2 and Eξi = 0. Hence applying the Lemma 1 we
have

E|
n∑

i=1

(Yi − EYi)|2r ≤ C{(n
l
)rσ2r

l +
n

l
σ2

l l
2r−2 + n2rα(l)}. (2.2)

By substituting (2.2) in (2.1), we obtain the desired result.
Proof of Theorem 1 and 2. To obtain the results it is sufficient to balance the
terms in the upper bound (2.1) by choosing the parameters.

Remark.In the case of independent random variables, σ2
l = O(l). Moreover,

in the dependent case a rough bound σ2
l = O(l2) can be easily obtained. If some

additional conditions are imposed on the process (Xi), the bound σ2
l = O(l) can be

achieved (see Proposition 2). Let us consider the following condition:
Cσ : σ2

l = O(l).
When the condition Cσ is satisfied, the same rate as for the associated case is attained.

Theorem 3. Let {Xn, n ≥ 1} be a stationary sequence of random variables
with bounded continuous density for X1. If assumption Cσ is satisfied then for some
r > 1, there exists a constant C > 0 such that, for every ε > 0 ,

sup
x

P [|F̄n(x)− F̄ (x)| > ε] ≤ Cε−2rn−r
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Corollary 1. Under the conditions of Theorem 3 for every x,

F̄n(x) −→ F̄ (x) a.s. as n −→∞.

Proof. For r > 1 observe that

∞∑
n=1

P [|F̄n(x)− F̄ (x)| > ε] ≤ Cε−2r

∞∑
n=1

n−r < ∞

The result then follows by using the Borel-Contelli Lemma.
Next we ontaiend a version of Glivenko-Cantelli Threorem valid for ρ-mixing random
variables. The proof follows along the lines of analogous result for associated of
random variables (Bagai and Prakasa Rao 1991).
Theorem 4. Let {Xn, n ≥ 1} be a stationary sequence of random variables satisfying
the conditions of Theorem 3. Then for any compact subset J ⊂ R,

sup[|F̄n(x)− F̄ (x)| : x ∈ J ] −→ 0 a.s as n −→∞.

Proof. Let K1 and K2 be chosen such that J ⊂ [K1, K2] into bn sub-intervals of
length δn −→ 0 where {δn} is chosen such that∑

n

δ−1
n n−r < ∞. (2.3)

such a choice of {δn} is possible. For instance, choose δn = n−θ where 0 < θ < r − 1.
Note that bn ≤ Cδ−1

n .
Let Inj = (xn,j, xn,j+1), j = 1, ..., bn = N, where

K1 = xn,1 < xn,2 < ... < xn,N+1 = K2,

with
xn,j+1 − xn,j ≤ δn for 1 ≤ j ≤ N.
Then for x ∈ Inj, j = 1, 2, ..., N we have

F̄ (xn,j+1) ≤ F̄ (x) ≤ F̄ (xn,j),

and
F̄n(xn,j+1) ≤ F̄n(x) ≤ F̄n(xn,j).

Hence
[F̄n(xn,j+1)− F̄ (xn,j+1)] + [F̄ (xn,j+1)− F̄ (x)]
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≤ F̄n(x)− F̄ (x) ≤ [F̄n(xn,j)− F̄ (xn,j)] + [F̄ (xn,j)− F̄ (x)].

Therefore

sup[|F̄n(x)− F̄ (x)| : x ∈ J ] ≤ sup[|F̄n(x)− F̄ (x)| : K1 ≤ x ≤ K2]

≤ max
1≤j≤N

|F̄n(xn,j)− F̄ (xn,j)|

+ max
1≤j≤N

|F̄ (xn,j+1)− F̄ (xn,j+1)|

+ max
1≤j≤N

sup
x∈Inj

|F̄n(xn,j)− F̄ (x)|

+ max
1≤j≤N

sup
x∈Inj

|F̄ (xn,j+1)− F̄ (x)|. (2.4)

Now by the mean value theorem for xn,j < u∗ < x we have

F̄ (xn,j)− F̄ (x) = F (x)− F (xn,j)

= (x− xn,j)f(u∗) (2.5)

. Since f , the density of X1 is bounded by the hypothesis, it follows that there exists
a constant C > 0 such that

|F̄ (xn,j)− F̄ (x)| ≤ Cδn, |F̄ (xn,j+1)− F̄ (x)| ≤ Cδn,

for 1 ≤ j ≤ N and x ∈ Inj. Then for ε > 0, choose n = n(ε) such that

2Cδn ≤
1

3
ε.

From (2.4) and (2.5), we get, for n ≤ n(ε),

P [sup
x∈J

|F̄n(x)− F̄ (x)| > ε] ≤ P [ max
1≤j≤N

|F̄n(xn,j)− F̄ (xn,j)| >
1

3
ε]

+ P [ max
1≤j≤N

|F̄ (xn,j+1)− F̄ (xn,j+1)| >
1

3
ε]

≤
N∑

j=1

P |F̄n(xn,j+1)− F̄ (xn,j)| >
1

3
ε]

+
N∑

j=1

P [|F̄n(xn,j+1)− F̄ (xn,j)| >
1

3
ε]

≤ CNε−2rn−r

= Cε−2rbnn
−r (by Theorem 3)

≤ Cε−2rδ−1
n n−r

The result follows by using (2.3) and Borel-Cantelli Lemma.
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2.1 Discussion of condition Cσ

We study the condition Cσ for some processes. Consider the following conditions:
M1 : The process is ρ-mixing and

∑∞
t=1 ρ(t) ≤ R < ∞.

M2 : The process is φ-mixing and
∑∞

t=1 φ(t) ≤ Φ < ∞.
Comment.Since the inequality ρ(t) ≤ 2(φ(t))1/2 holds (see Doukhan, 1994), M2
implies M1. For Gaussian processes φ-mixing is equivalent to m-dependence (see
Ibragimov and Linnik, 1971, Section 1), whereas ρ-mixing is equivalent to α-mixing
(see Kolmogorov and Rozanov, 1960, Section 2.1). If the process (Xn) is ρ-mixing,
we obtain:
Proposition 2.Let (Xn, n ≥ 1) be a stochastic process on (R). Suppose that Xn

admits a bounded marginal density which is common for all n. If assumption (M1)
is satisfied then there exists a constant G such that for any l, σ2

l ≤ Gl.

Proof.We use the decomposition

σ2
u(l) = E(

u+l−1∑
i=u

(Yi − EYi))
2

≤
u+l−1∑
i=u

E(Yi − EYi)
2 +

∑
u≤m<t<l+u−1

|Cov(Ym, Yt)|

= T1 + T2. (2.6)

The first term in above can be estimated as follows

T1 ≤ 4l. (2.7)

To bound the term T2 we apply a ρ-mixing covariance inequality (see Doukhan (1994),
section 1.2.2.),i.e.,

|Cov(Ym, Yt)| ≤ 2ρ(t−m)(EY 2
m)1/2(EY 2

t )1/2 ≤ 2ρ(t−m).

We obtain

T2 ≤ 2
l+u−2∑
m=u

l+u−1∑
t=m+1

ρ(t−m) ≤ 2.Rl (2.8)

By substituting the bounds (2.7) and (2.8) in (2.6), proposition will be proved.
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