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Absirace: - Tabu Search (TS) is a robust neighborhood search algorithm used to solve a wide range of
combinatorial optimization problems. In this paper, the effects of six neighborhood generation and move
selection mechanisms on the petformance of TS are investigated. Among these strategies is a newly proposed
dynamic neighborhood which is shown to be efficient in solving the problem under consideration, To compare
the performance of these strategies, a set of constrained Traveling Salesman Problems (TSP} is solved using
different neighborhoods. Computational resuits are then compared in terms of solution qualities and
convergence speeds. The results show that Tabu Search performance is greatly affected by the neighborhood

generation mechanism and move selection policy.
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1 Introduction

In recent years, with the advent of complex
industrial systems, process and system optimization
have become a major research area. Many
organizations are faced with different challenges,
such as resource constraints, severe competition,
rapid  market changes, and environmental
limitations. Because of these issues many
optimization problems arise in modern industries.
Nevertheless. real sized optimization problems are
usually large and cemplicated. Therefore, solving
such problems by traditional deterministic methods
is very time consuming and inefficient. On the other
hand, simplification of such complex problems
usually makes their results inaccurate and unsuitable
for real life situations.

In response to such needs, heuristic algorithms
such as Tabu Search, Simulated Anaealing and
Genetic Algorithm, with high calculation speed and
good (not necessarily optimum) solution quality,
seem to be good alternatives for optimization
procedures. Among many advantages of these
techniques, is their good adoption to wide range of
optimization problems [1,2]. These methods are
working within feasible solutions space and are not
dependent on the problem structure. Thus, as long as
the decision variables are discrete or they can be
defined as discrete variables, complicated problems
can be coded and solved by these methods. This is
done by converting each solution into a numerical
string of decision variables. However, even after

adjusting the algorithm on problem structure,
parameters selection has a great effect on run times
and the quality of final solutions.

In some research works, the performances of
some neighborfood search heuristics are compared
using different standard benchmark problems.
Nevertheless, such comparisons may not be fair and
exact, since with proper search parameter settings
most techniques may provide good answers. In other
words, the performance of any algorithm is affected
by the way that its parameters have been tuned and
with proper parameter tuning, many techniques may
work well on a given probiem.

In this paper, however, a different approach is
taken. Our objective is to evaluate the effects of
various neighborhood generation mechanisms and
move selections policies on the performance of Tabu
Search (TS). To achieve this goal, first different
neighborhoed generation mechanisms and move
selection policies in TS are presented. Along this
line, we also propose a dynamic aeighborhood
mechanism that adjusts the size of neighborhood
during the search. This new approach can adjust the
size of neighborhood based on the search progress.
Then, we employ a set of TSP problems-one of the
most well known and widely used benchmark
preblems-to investigate the effects of different
neighborhood  generation and move selection
policies. Finally, search results are compared and
discussed in terms of computational speed and
solutions qualities
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2 The heuristic: Tabu Search

During the last two decades, with the advent of
computer capabilities, many heuristic algorithms are
proposed te solve large and complicated
optimization problems [3]. Generally, most of these
heuristics are inspired by the natural and physical
phenomena. These techniques, to some extend, are
the simulation of such phenomenon by mathematical
functions.

Although, most of these methods do not
guarantee optimum solutions, they try to find an
optimum or near optimum solutions by searching the
feasible solution space of the problem. That is why
they are called "neighborhood search methods™.
Genetic Algorithm (GA), Simulated Annealing (SA)
and Tabu Search (TS} are some well known such
algorithms.

Tabu Search is a robust neighborhood aigorithm.
This method which was first proposed by Glover
[4], is an iterative neighborhood search that step by
step, searches feasible solution space to find the
optimum or near optimum solution. In this method,
search begins from a feasible solution and for each
move, the neighborhood of current solution, is
generated and evaluated. Then a new move is made
to the best allowable (non-tabu) answer in the
neighborhood. The stepwise transition from one
solution to another allows the search to reach an
optimal or a close-to-optimal solution after a number
of moves. However, a single move, by itseif, may
not necessarily improve the cument value of
objective function. This distinguishes tabu search
from other traditional techniques such as hill
climbing that require each move to be an improving
step. Throughout the search, the best solution found
so far, Chest, and its corresponding sequence, Shest,
will be recorded and updated. The important
parameters in TS are as follows:

Starting Point: Search begins from a feasible
solution such as S. A feasible soiution is any set of
values for decision variables that satisfies problem
specifications and constraints.

Neighborhood: For a given solution S, the
neighborhood NfS) is a set of feasible solution
generated with the minimum changes in current
solution. Pairwise interchange is the most popular
mechanism for neighborhood generation. In this
mechanism, each neighbor is generated by changing
the position of two members in the current solution
string,

Move: A move is the transition from the best
solution, 5™, in the previous neighborhood to the
best permissible solution, s, in the current
ueighborhood. The fitness of each solution is

calculated and compared using the objective
funetion of the problem. Such a move, however,
may or may not be an improving one.

Tabu List: One of the important features of tabu
search is its ability 1o avoid being trapped in local
optima by constructing a list of tabu moves. Tabu
list, T _list, includes a certain number (7 size) of
previous moves which are nat allowed at the current
iteration. Once a move from s~ to s is made, s is
stacked to the top of tabu list and the oldest member
of the list is removed. Thus, retuming back to this
s is forbidden for the next T size iterations. This
can exclude, to some extent, those moves which lead
to possible cycling. The size of tabu list can affect
the search performance. Although a longer list may
prevent cycling, it requires more scanning and may
limit the search domain. The best tabu list size
appears to be problem dependent.

Termination Criteria: The last element
necessary for tabu search is termination criterion. In
general, search can be stopped when a certain
number of iterations, Mmax, is completed, after a
pre-defined of computational time, Tmax, is reached,
or when no improvement is obtained in a specific
rumber of moves.

A full explanation of this technique and some of
its applications can be found in [5,6,7,8]

3 Neighborhood generation and move

selection mechanisms
Generally, parameters setting have a considerable
impact on in heuristic algorithms performances. In
many cases, it takes many trial runs to find suitable
values for search parameters. This, in turn, makes
optimization process a time consuming task.
Fortunately, in comparison to the similar methods,
TS is a robust algorithm with few parameters.

Neighborhood generation mechanism and move
selection policy are the most important parameters
that influence TS performance in terms of solution
quality and computational time. Conventionally, a
neighborhood, N¢S), is defined as a set of solutions
that can be obtained by performing one transition in
the current solution. In the related literature,
pairwise interchange is the most widely used
technique to make such a transition. In this method,
a solution is generated by switching the members
{cities in our case) in positions / and /. The complete
pairwise interchanges of a J-city problem leads to
[N¢si] = JtJ - 1)/2 neighbors.

Extraction and reinsertion is another technique
for transition. With this method, the neighborhood
contains all solutions obtained by extracting the city
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in position 7 and inserting it right after (or before)
the city in position j. The neighborhood size for the
extraction and reinsertion approach is [N = Jr J -
1)2 which is almost doubled as compared to
pairwise interchange. Thus this mechanism appears
t©  be more computationally demanding.
Furthermore, as indicated by Adenso-Diaz [9], none
of these two techniques seems to outperform the
other in terms of solution quality for a given run
time. Therefore, in this paper only the pairwise
interchange approach is used as the basic
neighborhood generation mechanism.,

The next step in tabu search is to specify a move
strategy. The classic approach is to evaluate the
entire neighborhood and choose the best allowable
move. However, the required computational time
could be unacceptably long when the problem size is
large. To overcome this problem, partial or random
sedrch schemes have also been proposed [10].

In following, six different neighborhood generation
and move selection mechanisms are discussed.
These policies are then evaluated using a numerical
example of 100 cities,

Pairwise Interchange of all neighbors (PI): This is
the most common police in which all neighbors of
the current soluticn are generated and evaluated at
each iteration. For a problem with J variables
(cities), the tansposition range (the range of
interchange) would be from | to (J)-1). The
neighborhood  size  for Pl policy s
IN()| = J(J=1)/2.

This number of solutions should be generated and
evaluated for each move. This policy guarantees
compiete neighborhood search and results in a better
solution quality. However, as problem size grows,
generation and evaluation of all neighbors can be
very time cansuming and would cause sluggish
convergence. To increase the search speed, partial
nejghborhood can be generated and evaluated.

Partial Neighborhood (PN): The range of
interchange in PN is from 1 to m (m < (J-1)). In
other word, neighborhood is generated by
interchanging the position of each city with a limited
number of next cities. Indeed, this wiil lead to a
smaller neighborhood and will increase search
speed. The number of neighbors for this case is :

| Vs :m(f-m)+i(i -1

First Improving Neighborhoed (FIN): In FIN
policy, neighbors for current solution are generated
one at the time and once an improving neighbor is
found the process of neighborhood generation will

stop. If no improving neighboer is found, the entire
neighborhood is generated and move is made to the
best one; just like PI, Therefore, the size of
neighborhood is not constant and can vary from 1 to
IN(s)| = J(J ~ 172

Random Neighborhood (RN): This mechanism is
similar to PN in terms of neighborhood size, but has
random nature. In this method, m cities from J-/
possible cities are selected randomly and
interchange will be done on them.

Adjacent Pairwise Interchange (API): This is a
special case of PN method, in which transposition
range is only 1. This mechanism generates the
sinallest neighborhood size.! The number of

neighbors in each move is: ‘N(s)| =(J-1).

Dynamic Neighborhood (DN): This policy aims at
taking advantage of both APl and simple PI
mechanisms by dynamicaily changing the
transposition range of variables (cities) in the
solution string (tour). The idea is to guild the search
as fast as possible towards unsearched areas where
the optimum solution may be located and then find
such solution by complete evaluation of entire
neighborhood. To achieve this, at the early stages,
only AP is used to speed up the search process. As
the search progresses, the neighborhood size is
enlarged by increasing the range of transposition.
This in turn, improves the solution quality at each
iteration. Finally, in final iterations, complete PI
interchange is employed to generate and evaluate
entire neighborhoed. To this end, we proposed the
following linear function to determine the
transposition range at each iteration:

I if =1
TR(n)=1{Z if beZixT=1

J-1 if ZzJ-1
Where: Z=X+Yn

in the above equation 7R(n/ is the upper limit of
transposition range at nth iteration, and X and ¥ are
the constant values determined experimentally. The
size of neighborhood is controlled by Z. The values
of Z <1 and Z > J-1 refer to the transposition ranges
of API and PI respectively. Since the value of Zisa
function of number of moves, n, as search
progresses the neighborhood size also grows so that
a through search can be perform at final iterations,
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4 Test problem for Tabu Search

Tc evaluate the performance of TS under different
neighborhood generation and move selection
mechanisms, the algorithm has been applied to a set
of constraint Traveling Salesman Problem (TSP)
problems. TSP is one of the most studied
optimization problems, [11,12,13], in which a
salesperson has to visit all intercannected cities only
once in such way that the total traveling distance is
minimized. In constrained TSP, there is no direct
connection between some cities. A schematic
example of constrained TSP is shown in Figure 1 in
which all 5 nodes are interconnected but there is no
direct connection between nodes C and D. Each
solution (tour) is represented by a sequence of cities
such as A B.C,E.D. For a prablem of size J/, there is
a total of .J/ possible sequences or tours. The cost
function is the sum of total crossed distances in a
given tour. [t shouid be noted that in constrained
TSP some tours may be infeasible due to the
absence of direct connection between two
consecutive cities (e.g. A,B,C.DE).

The search starts with a feasible tour or sequence
of cities, say S. Then the neighborhood N(S), is
generated by performing one transition in the current
solution, i.e. pairwise interchange. Each neighbor in
Nis) has its associated objective function value or
iotal distance Gfs), and the one with the smallest
Grs) is defined as the best neighbor, denoted by 5
A move is then made from s™, the best sequence of
the immediate previous neighborhood, to s,
provided that s is not in the current tabu list. The
best sofution found so far, and its corresponding
sequence are then updated if necessary and kept in
memory. The sequence s is then stacked into the
tabu list of pre-defined size and the oldest sequence
is removed from the list. The search is stopped when
termination criterion is met.

Fig. 1, A representation of constrained TSP

5 Numerical example and results

For any neighborhood search procedure, the size of
neighborhood and the way that the next move is
selected has a great effect on search performance.
This becomes more evident when the problem size
is large.

For comparison, the computations were carried
out on a set of TSP problems with 100 cities
(variables). It should be noted that for a problem
with 100 cities, the number of possible solutions
(tours) is 100!; and hence using an sfficient solution
procedure is inevitable. To make the optimization
problem more realistic, constrained TSP has been
used. This is a more practical version of TSP that
can be implemented to many real life optimization
problems [14,15], and hence considered in this
research as the benchmark problem.

The algorithm was coded on MATLAB R6.3
software and run on a Pentium 4 computer. For
more accurate and fair comparison, in all runs the
arrangement of cities, the termination criterion and
the starting points are kept the same.

The algorithm was run for each of the six
strategies and the results for the best search
parameters are presented in Table 1.

Table 1. Resulis of TSP example with 100 cities

o Neighborhood)
Neighborhood| Initial | Final |. Chjechve size
Mechanis dist di .. (improvernend
echanism istance distance (%) |N(S)|
Pl 16160 164.5 4950
RN 16120 165.1 2535
™ 16980 i507 2535
42743
API 23350 67.3 99
FIN 1602G 166.8 ~
DN 16160 164.3 -

As mentioned before, starting points and tabu
list size for all policies are kept the same. The
neighborhood sizes are also shown in Table 1. It is
noted that for FIN and DN strategies the size of
neighborhood can be determined due to their
dynamic behaviors.

The results in Table ! show considerable
objective function (distances) improvements for ali
policies during 30 seconds of search time. The least
improvement in the objective function is mare than
67% while there is about 167% reduction for the
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best scenario. Nevertheless, there is a big difference
in terms of search performance under different
policies. This iHustrates the importance of
neighborhood generation and move selection
policies on the search effectiveness.

The convergence curves for different strategics
are also shown in Figure 2. As shown in Figure 2, all
mechanisms {excluding API) converge to the similar
answer, Although AP! neighborhood demonstrates a
fast convergence rate at the beginning, it performs
inferior in ferms of solution quality. The fast
convergence rate of API is a result of its small
neighborhood size; whereas the same feature
probably causes it being trapped in local optima.
Other strategies converge to similar solutions.
However, among five other mechantsms, FIN and
DN strategies seem to be the best as they
demonstraie both superior convergence rate and
solution quality. They both somehow use dynamic
neighborhoods that allow the algorithm to move fast
towards promising parts of solution space. They are
also capable of doing a complete neighborhood
search at the final stages where possible optimum is
near by. This reduces the computational time at the
beginning of the search while improves solution
quality at final iterations. Nevertheless, since DN
method employs a guiding function to determine
transposition range, search movement under this
scenario is more controlled. This feature resulits in a
slightty better performance for this method than FIN

policy.

— =
i \ —n
; AR

Costjunit)

Fig. 2 Cb-rlvergence curves for cxample problem

using different neighborhoods

Amongst varicus neighborhoods PI, PN, and RN
mechartisms demonstrate somehow similar patterns.
Relative duilness of PI mechanism is because of its
neighborhood size and move selection policy that

requires generating and evaluation of all neighbors
for each move. On the other hand, evaluating all
neighbors will increase the probability of finding an
optimum solution. Although in the example problem
the neighborhood sizes of RN and PN are the same,
RN clearly outperforms PN, The random nature of
search in RN, that extends the search area, is the
main reason for this advantage. This is somehow
similar to what happens in Simulated Annealing,
another powerfui probabilistic neighborhood search.

6 Discussions and Conclusions

Many neighborhood search algorithms have evolved
during last few decades. Among these, Tabu Search
is an efficient and robust technique. With its few
search parameters, it requires little parameter tuning.
Neighborhood generation and move selection
policies are indeed some the most important
parameters for any neighborhood search heuristics,
including TS. In this research, the effects of
different neighborhood generation and move
selection mechanisms on search efficiency were
analyzed. Computational results have shown that in
the longer run times, most neighborhood
mechanisms resuft in simifar solutions. However,
the rate of improvements largety depends on the
type of neighborhood. This becomes more evident
for shorter computational times and for larger
problem sizes. It seems dynamic neighborhoods
such as DN and FIN lead to better solutions in
shorter search times. This is mostly because of the
part of neighborhood to be evaluated varies in
different phases of the search. In the beginning,
smaller neighborhood is usually evaluated allowing
the search to expand search domain. After several
iterations when the algorithm converges to
promising part of solution space, bigger
neighborhoods are generated and evaluated to
increase solution quality. Therefore, it may be
beneficial to use different  neighborhood
mechanisms at different stages of the search. Due to
more regulated neighborhoad generation procedure
in DN, it generally performed better than FIN;
although the difference was not so large in our
example problem.

Indeed, we can not extend the results find here to
all optimization problems. However, it is clearly
shown that the performance of Tabu Search, and any
other neighborhood search for this matter, is greatly
affected by its neighborhood generation and move
selection mechanisms. This could be a promising
area for future research works.
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