
A General Framework for Testing Web-Based Applications
Saeed Abrishami, Mohsen Kahani

Computer Engineering Department, Ferdowsi University of Mashhad
s-abrishami@um.ac.ir r, kahani@um.ac.ir

Abstract
Software testing is a difficult task for web based
applications due to their special features like
multi-tier structure and emergence of new
technologies (e.g. Ajax). In recent years,
automatic testing of web based applications has
been emerged as a promising technique to tackle
the difficulties of testing these types of
applications and several frameworks have been
proposed for this purpose. But the most
important problem of these frameworks is
the lack of generality for different types of
tests and programming environments. In this
paper, we proposed a general framework for
automatic testing of web based applications
that covers all aspects of different types of
testing, in an arbitrary web based application.

1. Introduction
Frequent use of the internet for crucial tasks,
creates serious concern for the quality of
web-based software systems. Web based
system tends to change rapidly, due to
emergence of new technologies (like Ajax)
and the demands of users. In such a highly
variable environment, manual testing of
softwares is a hard and time consuming task,
since automated software testing is an
inevitable choice for testing the web-based
software.
Software testing methods are traditionally
divided into black box testing and white box
testing. Black box testing treats the software
as a black-box without any understanding of
internal behavior. It aims to test the
functionality according to the requirements.
Thus, the tester inputs data and only sees the
output from the test object. White box
testing, however, is when the tester has
access to the internal data structures, code,
and algorithms. White box testing methods
include creating tests to satisfy some code

coverage criteria, and also can be used to
evaluate the completeness of a test suite that
was created with black box testing methods.
In recent years the term grey box testing has
come into common usage. This involves
having access to internal data structures and
algorithms for purposes of designing the test
cases, but testing at the user, or black-box
level.
Several techniques have been proposed for
the testing of web-based applications as both,
research proposals and commercial tools. It
is roughly possible to categorize such
techniques into three groups[1]:
(1)functional testing techniques, supporting
requirement-base testing; (2) structural
techniques, supporting some form of white
box testing based upon the analysis and
instrumentation of source code; and (3)
model-based techniques, which exploit a
navigation model of the application.
Different frameworks aim to construct an
infrastructure for automatic testing of web-
based applications. Sampth et. al. [2]
proposed a framework that uses user session
logs to generate test cases and then a replay
tool sends these generated test cases to the
server and collects the results. These results
send to a test oracle that compares them to
the expected results. This framework also
uses a Coverage Analysis Tool measure the
adequacy of the test suit, using statement
and method coverage testing.
Zhu [3] proposed a framework for testing of
web services. In this framework, each web
service should be accompanied by a testing
service. In addition to these testing services,
testing tool vendors and companies have
independent testing services to perform
various kinds of test tasks like to generate
test cases, to measure test adequacy, to

mailto:s-abrishami@um.ac.ir
mailto:kahani@um.ac.ir

extract various types of diagrams from
source code and so on. The trusted
independent test services can call the testing
services belong to a web service, to access
the internal information (such as source
code).
Chu et. al [4] presented a testing framework
called FAST (Framework for Automating
Statistics-based Testing) based on a method
called statistical testing. Statistical testing
techniques involve exercising a piece of
software by supplying it with test data that
are randomly drawn according to a single,
unconditional probability distribution on the
software’s input domain. This distribution
represents the best estimate of the
operational frequency for the use for each
input.
One of the most important parts of this
framework is Automated Test Data
Generator that is responsible for generating
test cases. The approach adopted in this
paper is specification of the input domain of
a software by means of a SIAD (symbolic
input attributed decomposition) tree which is
a syntactic structure representing the input
domain of a piece of software in a form that
facilitates construction of random test data
for producing random output for quality
inspection.
In a similar manner, the specification of
each product unit (output) is addressed by
the SOAD (symbolic output attributed
decomposition) tree. A SOAD tree can be
used as a tool for describing the expected
result which satisfies the user’s requirement
and as a basis for analyzing the product unit
automatically, without a test oracle. The
Quality Analysis module analyzes the
product units and finds the “Defective
Outputs”. At the end, the defect rate has
been computed using a binomial distribution.
MDWATP (Model Driven Web Application
Testing Program) is a framework proposed
by Li et. al. [5] for testing web application
based on model driven testing. It uses 4

principal models based on UML2.0 standard.
The first model is System Under Test (SUT)
View that presents the model of the system
being tested. So the navigation is a basic
characteristic of web applications, they used
a navigation model proposed by Lucca et. al.
and also by Ricca and Tunella, named Web
Application Navigation Model (WANM).
WANM depicts the navigation relations
among the client pages, and hyperlinks and
forms in each client page. Based-on the SUT
View, test cases are automatically or semi-
automatically generated. The generated test
cases are described in the Test Case View,
that is a model extends UML sequence
diagram. Each test case is a sequence of
client pages to be accessed. After that, the
process and environment of test execution
are modeled in the Test Execution View. In
the test execution view, two kinds of models
are defined: the test deployment model that
extends the deployment diagram of UML2,
and the test control model that extends the
UML activity diagram.
After the execution engine automatically
executes test cases based-on models
described in the Test Execution View,
Finally test results are represented in the
Test Result View. Test result model is
defined to save and present test results. And
besides being shown in reports, test results
would be associated with test case models.
But current frameworks have two major
problems: (1) they concentrate on special
aspects of testing and there is no general
framework that contains all elements and
types of testing for web-based applications,
and (2) application developers don’t like to
share their internal information, models and
source codes with others (including external
application testers) and this makes white box
testing so difficult or even impossible. In
this paper we have proposed a framework
that solves these two problems. This
framework has been explained in section 2.

Figure 1. Architecture of the proposed framework

3. The General Framework

In this section we review our proposed
framework for software testing. The general
framework and its components have been
shown in figure 1.
STOL language: As the components of the
framework has to exchange information
with each other (and with the external
world), we require a common language for
this purpose. We define STOL (Software
Testing Ontology Language), an XML-
based language with the required terms and
relations (ontology) for software testing. It
has been used for explaining program
models, test case input ranges, etc.
Testers: various testers included in the
framework for different purposes. Before we

examine these testers in detail, note that
these testers belong to different strategies:
Black Box, White Box and Grey Box testing.
In the case of Black Box testing, the tester
directly communicates with the application
itself. But in the other two cases, additional
information needed that must be provided by
the programmer or directly extracted from
the source code. In this situation, the tester
communicates with the wrapper of
application to obtain the required
information (e.g. the application model).
The wrapper and its usages will be
explained in the following. Here is a non-
exhaustive list of testers:
- Functional Tester: This is a Black Box
tester that checks if the application behaves
as expected. This tester simply applies test

Test Executer

Test Case
Generator

Test Oracle

Web Application

Wrapper
User Sessions

Framework

Recorder

Web Application Ontology

Uses

cases to the application directly, and passes
the generated results to the oracle to
compare them with the expected behavior.
- Code Coverage Tester: this is a White
Box tester that determines the adequacy of
test cases by assessing the level of coverage
of the structure they reach. Two common
forms of code coverage are function
coverage, which reports on functions
executed and statement coverage, which
reports on the number of lines executed to
complete the test. Besides standard coverage
measures, other coverage criteria can be
defined for web-based applications that we
discuss them in Model-Based tester. As this
tester requires an instrumented version of
application, it must communicate with the
wrapper interface, asking for enabling the
instrumented code (see Wrapper below). In
some programming languages like java, the
instrumentation can be done directly on the
object code, hence there is no need to the
source code (or the wrapper in our case).
- Model-Based Tester: a model describes
some aspects of the system under test. The
model is usually an abstract presentation of
the application’s designed behavior. Models
have two usages in testing of web
applications: automatic generation of test
cases (see Test Case Generator below), and
structural testing of application. In the latter,
a high level representation of application,
like the navigation model is used.
Navigation model describes a web
application using its composing pages (static
and dynamic) and navigation links. Using
this model, some coverage criteria such as
page coverage and hyperlink coverage can
be tested, in order to determine the adequacy
of test cases. But how the tester acquires the
model? The models can be built manually
by the application programmer, or created
automatically from the application (source)
by running a special program. In each case,
this is the responsibility of the wrapper to
provide this model to the tester (see

Wrapper below) via an appropriate interface,
using STOL language.
- Stress Tester: this is a Black Box testing
which checks for the stress the applications
can withstand. The idea is to create an
environment more demanding than the
application would experience under normal
work loads, and to see how application
responds to this extreme load.
- Load Tester: this is a Black Box Testing
in which the application is tested against
heavy loads or inputs such as testing of web
sites in order to find out at what point the
application fails or at what point its
performance degrades. Load testing operates
at a predefined load level, usually the
highest load that the system can accept
while still functioning properly.
- Security Tester: security testing is carried
out in order to find out how well the system
can protect itself from unauthorized access,
hacking, cracking, any code damage etc. In
the case of web applications, the application
must be tested under familiar attacks like
SQL injection, session hijacking, XSS
attacks and so on.
Test Case Generator: this component
generates the inputs to the desired testers. In
the case of a web application, test cases
consist of URLs, name-value pairs (input
data) and user actions (like clicking on a
button). This component is a critical part for
automating the test process, since we have
anticipated four independent modules for
this component in the framework.
1. The first module provides record and

playback features that allow testers to
record interactively user actions and
replay it back any number of times
(using Executer component), and
comparing actual results to those
expected (using Oracle component).

2. The second module exploits the user
session logs of a web server as a means
of generating test cases in a large scale.
Each user request logged in the web

server usually consists of IP address,
time stamp, the requested URL, cookies,
name-value pairs in GET/POST requests
and the referrer URL. By following the
subsequent requests in a predetermined
time interval from a particular IP address,
a complete user session can be extracted
and used as a new test case.

3. The third module uses different models
and specifications of the application, like
UML models, navigation model, Z-
specifications and etc. to generate the
test cases. The models or specifications
can be obtained from the proper
interface of Wrapper, using STOL.

4. And finally, the fourth module uses
ontology-based test case generation
approach, in which the ontology of the
application domain is utilized to
generate test data. For instance, in a web
forum application, a light-weight
ontology can be developed which
describes the users, and then, different
parts of the application, e.g. form input
fields, can be annotated with concepts of
this ontology. In such case, test-cases for
those parts can be generated
automatically based on the ontology.

Test Oracle: generates the desired outputs
for the test cases and compares the actual
results of tests, to the desired ones to
determine the degree of success. In the case
of web applications, the desired outputs
mainly consist of HTTP responses returned
from the web server. Generation of the
desired outputs depends on the method
selected for test case generation.
Executer: this component sends the test
cases to the web server and receives the
responses, and finally sends them to the
Oracle to be evaluated.
Wrapper: An important problem in white-
box or gray-box testing of an application is
the lack of knowledge about internal
structure of that application. Most
programmers don’t share their valuable

source codes with other, and this is a
problem for tests that require the source
code. Because we want to present a
framework to provide testing service for
external application, we need to tackle with
this problem. Our solution is simple:
external applications should provide
required wrappers to provide enough
information for the framework to perform
the test. Each time a tester requires a service
that is beyond the functional services of the
application (i.e. requires the source code),
calls the appropriate API of the wrapper and
receives that service. Some of theses
services are:
- Activate the instrumented mode: some

testers likes Code Coverage Tester
require an instrumented version of
application that includes instrumentation
codes measure the coverage obtained
during test. These testers have to activate
the instrumented mode, before starting
the test.

- Getting various application models:
testers like Model-Based Tester require
application models (e.g. navigation
model) and they can obtain these models
by calling this service with the name of
their desired model. This service has an
API that returns the list of models
represented by this service.

To produce the wrapper, an application is
distributed for each web programming
platform (e.g. PHP, Java …). Developers
can produce the wrapper by running this
application on their source code, and add the
resulting codes to their programs.

3. Conclusion and Future Works
In this paper a general framework for
automatic testing of web-based application
has been proposed. This framework contains
different testing techniques, including black-
box and white-box testing, which make it a
comprehensive testing framework. Also we
proposed a Wrapper for each application

that provides the required internal
information to the testers. This Wrapper
solves the problem of lack of trust between
application developers and the external
testers. Furthermore, we define a language
and ontology called STOL (Software
Testing Ontology Language) for
communication between different parts of
the framework.
For the future, we plan to (1) Define the
details of different components of the
framework and connections between them
then, (2) implement and test the
performance of the framework using current
open source tools and programs written by
team members.

Acknowledgement
This work has been supported by a grant by Iran’s
Telecommunication Research Center (ITRC), which
is hereby acknowledged. The authors also appreciate
the support of WTLab at FUM.

References
[1] Filippo Ricca, Paolo Tonella, "Web
Testing: a Roadmap for the Empirical
Research," wse, pp. 63-70, Seventh IEEE
International Symposium on Web Site
Evolution, 2005
[2] Sreedevi Sampath, Valentin Mihaylov,
Amie Souter, Lori Pollock, "Composing a
Framework to Automate Testing of
Operational Web-Based Software," icsm, pp.
104-113, 20th IEEE International
Conference on Software Maintenance
(ICSM'04), 2004
[3] Hong Zhu, "A Framework for Service-
Oriented Testing of Web Services,"
compsac, pp. 145-150, 30th Annual
International Computer Software and
Applications Conference
(COMPSAC'06), 2006
[4] P. Dhavachelvan, G.V. Uma, “Multi-
agent-based integrated framework for intra-
class Testing of object-oriented software”,
Applied Soft Computing 5, pp. 205–222,
2005.

[5] Nuo Li, Qin-qin Ma, Ji Wu, Mao-zhong
Jin, Chao Liu, “A Framework of Model-
Driven Web Application Testing”,
Proceedings of the 30th Annual
International Computer Software and
Applications Conference (COMPSAC'06),
2006

