
 ١

Ontology-Based Web Application Testing

Samad Paydar, Mohsen Kahani
Computer Engineering Department, Ferdowsi University of Mashhad

sa_pa282@stu-mail.um.ac.ir, kahani@um.ac.ir

Abstract- Testing Web applications is still a
challenging work which can greatly benefit from
test automation techniques. In this paper, we focus
on using ontologies as a means of test automation.
Current works that use ontologies for software
testing are discussed. Further a theoretical
roadmap is presented, with some examples, on
ontology-based web application testing.

Keywords: Ontology, Software testing, Web
application, test automation.

1. Introduction

Web applications possess special

characteristics, such as multi-tired nature, multiple
technologies and programming languages being
involved in their development, highly dynamic
behavior and lack of full control on user's
interaction. This makes the analysis and
verification of such systems more challenging
than traditional software. Therefore, Web
application testing is a labor-intensive and
expensive process. In many cases, new testing
methods and techniques are required, or at least
some adaptations must be applied to testing
methods targeted at traditional software [1] [2].
Further, with the new trend in web based systems,
i.e. using Web Services and SOA-based systems
which lead to highly-dynamic and more loosely-
coupled distributed systems, the situation gets
even more challenging [1].

Test automation, that is, automating the
activities involved in testing process, leads to
more cost-effective, labor-saving and time-
preserving methods. Using methods and
techniques for automated testing of web
applications can reduce the above mentioned costs
and complexities [1].

Generally speaking, there are three main types
of automation in software test domain.
1. Writing programs that perform some type of

tests on systems. Unit testing is a good
example of such automation. In order to test a
unit of a system, e.g. a method, a program is
written to execute the required tests on the
test target. Of course, this is not limited only
to unit testing, and for instance, it is possible
to write a program to perform functional tests

on a Web application using HTTPUnit [3].
This kind of automation, despite its great
value, may be expensive for testing web
applications, because such systems always
grow in size and frequency of modification.
We call this type, manual test generation,
automatic test execution.

2. The second type of automation usually deals
with coarse-grained goals, such as
functionality testing and acceptance testing.
The automation is mainly performed by
capture/replay methods [3], relying heavily
on human involvement and user interaction.
Capture/replay methods, being not real
automated methods, are not so cost-effective
and scalable, because the capturing phase,
which is the main part of the test, needs
human intervention and it might be expensive
or very hard to capture all interactions and
user scenarios [4]. We call this type, manual
test case generation, automatic test execution.

3. The third type of automations is automatic
test generation based on some formal model
or specification of the system. This kind of
automation, which is called model-based
testing, is nearer to real automation. Many
works in the literature have been reported
using this type of automation [1]. We call this
type, automatic test generation, automatic
test execution.
Beside this categorization, there are some

other technologies that can be used for web
application testing. For instance, intelligent agents
are autonomous and able to live and migrate
across the network and adapt to the dynamic and
loosely-coupled nature of web applications.
Therefore as suggested in [1], they fit better for
automating web application testing. Web services
can also be considered as another example of such
enabler technologies, especially for testing of
highly-dynamic and loosely-coupled systems like
service-oriented systems [5].

Ideally, to fully automate the testing process,
i.e. replacing the human tester with a computer
and remove all dependencies on human, all kinds
of knowledge that is required for the test process,
must be acquired from the human tester and
transferred to the computer in a formal and
machine understandable format. Ontologies, as a
powerful tool for capturing domain knowledge in
a machine understandable format, show great
potentials for being used to move toward this way.

 ٢

In our view, ontologies can be assumed as a
very powerful infrastructure for real automation of
web application testing. Therefore they can be
considered in the third category of automation
types.

In this paper, we first present current works
that have used ontologies in software testing
process, and then discuss their benefits,
capabilities and potential uses for automating web
application testing.

2. Current Works

An ontology is an explicit and formal
specification of a conceptualization of a domain of
interest [6]. To state it simpler, an ontology
defines the basic terms and relations comprising
the vocabulary of a topic area as well as the rules
for combining terms and relations to define
extensions to the vocabulary [7]. The main point
about the ontology is its formality and therefore
machine-processable format. Ontologies can be
used in different phases of software development
 [8]. Here we are concentrated on current works
that have used ontologies for software testing
process.

In [9], an agent-based environment for
software testing is proposed with the goal of
minimizing the tester interferences. There are
different kinds of agents in the system, such as
interface agent, execution agent, and oracle agent.
Each kind of agent is responsible for one part of
the testing process. For example, TCG (Test Case
Generator) agent has the role of test case
generation. In order to enable agents to
communicate and understand each others'
messages, and also share a common knowledge of
the test process, an ontology for software testing is
developed and used. This ontology contains
concepts like activities, stages, purposes, contexts,
methods, artifacts, etc.

TestLixis a project with the goal of
developing necessary ontologies for Linux test
domains. It focuses on 3 ontologies: OSOnto
(Operating System Ontology), SwTO (Software
Test Ontology), SwTOi (Software Test Ontology
Integrated). This project is registered in
2007/4/14, but there is no information or
documentation available on the project homepage
 [10].

In [11], a work is introduced which is about
development and use of ontologies of the fault and
failure domains of distributed systems, such as
SOA-based system and Grids. The work is said to
be in the early stages of the ontology
development. It is hoped that in future, this
ontology can be used to guide and discover novel
testing and evaluation methods for complex
systems such as Girds and SOA-based systems. In
this work, ontologies are viewed as an intelligent

communication media for machines, and also as a
means for enabling machines to acquire
knowledge necessary to develop their own
strategies for testing and evaluating systems.

In [12], ontologies have been used to model
Web service composition logics, Web service
operational semantics, and test case generation for
testing Web services. OWL-S is used to describe
the semantic and application logic of the
composite Web service process. Then, using the
Petri-Net ontology, developed by the authors, a
Petri-Net model is constructed to depict the
structure and behavior of the taeget composite
service. Then, using the Petri-Net model of the
composite service, and the ontology, test cases are
generated for testing the service.

In [13], an ontology is developed for software
metrics and indicators. ISO standards, for instance
ISO/IEC 15939 standard [14], and ISO/IEC 9126-
1 standard [15], have been used as the main source
for development of the ontology. The authors
have described the application of this ontology in
a cataloging system. This system provides a
collaborative mechanism for discussing, agreeing,
and adding approved metrics and indicators to a
repository. In addition, the system provides
semantic-based query functionality, which can be
utilized for consultation and reuse. Similar work is
also presented in [16].

A SOA-based framework is proposed for
automated web service testing in [17] and [18].
The authors have mentioned some technical issues
that have to be addressed in order to enable
automated online test of web services. For
instance, issues like how to describe, publish, and
register a testing service in a machine
understandable encoding, or how to retrieve a
testing service. To resolve these issues, a software
testing ontology named STOW (Software Testing
Ontology for Web Services) was developed.

In addition to categorization of terms and
concepts, they have defined appropriate relations,
which can be used to do some reasoning in the
testing process. For instance, when a testing
service with the capability of testing Java applets
is requested, and there is a testing service capable
of testing Java programs, it can be reasoned that
the later can be used for the required task.

In [8], some examples of ontology
applications throughout the whole software
development lifecycle are presented. It is claimed
that in the testing phase, a non-trivial and
expensive task, which demands some degree of
domain knowledge, is the task of writing suitable
test cases. They propose to use ontologies to
encode domain knowledge in a machine
processable format. Using ontologies for
equivalence partitioning of test data is mentioned
as an example. In addition, by storing the domain

 ٣

knowledge in an ontology, it will be possible to
reuse this knowledge.

In [19] the main focus is to use ontologies in
early software design phases, i.e. specifications,
with emphasis on detecting conceptual errors,
such as mismatches between system behavior and
system specifications. In addition, an architecture
and some required tools are presented to support
such conceptual error checking.

In [20] it is suggested that ontologies can be
used as semantic formal models, and hence MDA
(Model-Driven Architecture) can be extended to
ODA (Ontology-Driven Architecture). Using
ontologies, it will be possible to represent
unambiguous domain vocabularies, perform
model consistency checking, validation and some
levels of functionality testing.

3. Ontology-based software testing
requirements

In this section we discuss the required steps to
reach the goal of ontology-based web application
testing.

The process of using ontologies in software
testing can be divided into two phases or
activities.
1. The first one is developing the required

ontology which captures an appropriate level
of required knowledge to perform the testing
process. By 'required knowledge' and hence
'required ontology', we mean two different
kinds of knowledge and hence ontology:

• The first kind of knowledge required is
the knowledge of the testing process, i.e.
different types of tests, their goals,
limitations and capabilities, the activities
involved in testing, their order and
relation. Obviously this kind of
knowledge is vital for automating web
application testing. Therefore from the
point of view of ontology-based software
testing, it is required to develop an
ontology which captures an appropriate
level of this knowledge in a machine
processable format.

• The second kind of knowledge required is
the application domain knowledge. It is
required to know the concepts,
possibilities, limitations, relations, and
expected functionalities of the application
under test. For instance, testing an online
auction web application will require
different knowledge from what is needed
for testing an e-learning application. One
simple reason is that to perform some
tests, like functional test, it is required that
expected functionalities be known.
Therefore, to fully automate the test

process, an appropriate level of
application domain knowledge is required
to be captured and formally expressed
through an ontology.

2. The next phase is to develop procedures for
utilizing the knowledge embedded in the
ontology to automate different tasks in the
testing process. Of course the two stages are
not necessarily independent or completely
sequential. It is possible to start second phase
with a reasonable ontology and incrementally
improve and enhance the ontology and the
testing processes.

3.1 Ontology developing for application
testing

Although development of a knowledge-rich

ontology is a time-consuming and laborious
activity, it seems that it does not possess serious
technical problems that need innovative ideas.
Currently there are numerous environments for
ontology development and also tools and utilities
to automate some activities of ontology
development. For instance, there are tools that
extract basic terms and concepts from a set of
technical documents using text-mining methods,
though their results need to be verified by an
expert [21]. It is worth to note that once an
ontology is developed for web application testing,
it can be frequently reused and incrementally
evolved and improved.

As stated before, an ontology defines the
basic terms and relations comprising the
vocabulary of a topic area, as well as the rules for
combining terms and relations to define
extensions to the vocabulary. So the main part of
the ontology development is to extract the terms,
concepts, relations and rules of the domain.
Currently there are good sources available for this
purpose. Here, we discuss some of them.

As stated in [22], The Guide to the Software
Engineering Body of Knowledge (SWEBOK) is a
project of IEEE Computer Society and
Professional Practices Committee which aims at
providing a consensually validated
characterization of the bounds of the software
engineering discipline and to provide a topical
access to the Body of Knowledge supporting that
discipline [23].

The Body of Knowledge is divided into ten
software engineering Knowledge Areas (KA)
(Figure 1). To promote a consistent view of
software engineering worldwide, the guide uses a
hierarchical organization to decompose each KA
into a set of topics with recognizable labels. A
two- or three-level breakdown provides a
reasonable way to find topics of interest. The
breakdowns of topics do not presume particular

 ٤

application domains, business uses, management
philosophies, development methods, and so forth.
The extent of each topic’s description is only that
needed to understand the generally accepted
nature of the topics and for the reader to
successfully find reference material.

One of the KAs defined in SWEBOK, is the
Software Testing KA. This KA is a useful source
for developing ontology of software testing. As
shown in Figure 2, the number of concepts and
facts and relations in the Software Testing KA, is
noticeable in comparison to other KAs. Chapter 5
of the guide, which is focused on Software
Testing, presents a breakdown of the topics and
related concepts in a manner that can be helpful
for developing the ontology. Although it does not
mainly focus on web application testing, but it can
be used as a useful guide to mange and organize
the concepts and relations.

In addition, there are ISO and IEEE standards
that can be used to extract the main terminology,
concepts, and their relations [14], [15], [24].

Therefore we believe that the first phase, that
is, the development of an ontology for web
application testing is not theoretically so
challenging.

Figure 1-SWEBOK knowledge areas (KAs)

Figure 2- Overview of quantity of elements in the SWEBOK

3.2 Ontology developing for application
domain

It is not a good idea to first develop the

system completely and then start to develop its
ontology separately from the scratch; rather it is
desirable to somehow synchronize the
development of the system with the development
of its ontology. We see two approaches for
reaching to this goal.

One approach is to develop the application
domain ontology and then start to develop the
application. In this approach, supporting tools and
environments are required to help the developer
use and communicate with the developed

ontology, while developing the application. For
instance, when designing a HTML form
containing a text field, the designer can annotate
the text field with the term 'emailAddress' defined
in the ontology of the application previously
designed. The main difficulty of this approach is
of course the development of the application
domain ontology. It is worth to note that although
it may seem that postponing the development of
the system to the completion of the development
of the ontology will lengthen the development
lifecycle, but it undoubtedly will shorten the
testing time and therefore this drawback can be
somehow remedied.

The second approach is to use ODA, as to

some extent suggested in [20]. In this case, it is

 ٥

required to develop the semantically-rich formal
models of the system using ontologies. Then,
automatically extract the executables of the
system from these models. Although this approach
is an open field for future research, but it is worth
noting that currently it is possible to use UML and
OCL as a language for designing ontologies of the
system and then from UML, get executable code,
though not 100% complete. Using UML for
developing ontologies is used in [18] [25] for
example, and significant work has been done to
bring together Software Engineering languages
and methodologies such as the UML with
Semantic Web technologies such as RDF and
OWL, exemplified by the OMG's Ontology
Definition Metamodel (ODM) [20].

3.3 Developing intelligent methods to
utilize the ontology

Once the required ontologies, whether

ontology of the testing process or ontology of the
application domain, are developed, the main part
of the job can be started. That is, to develop
intelligent methods and procedures that utilize the
available ontologies to minimize the human
intervention in the testing process.

Although some works in this direction, has
been reported in the literature ([12], [18]), but this
is still an open research area and the methods of
using ontologies, needs to be improved. For
instance, in [9], which is an agent-based testing
framework, ontology is used only as a
communication media between the agents. Agents
run procedures that are exactly hardwired in them,
and there is no inference or adaptation.

To further move in this area, it is required to
utilize ontologies to enable agents dynamically
devise their plans and procedures. This is needed
because it can eliminate the need to hardwire all
procedures within the agents.

4. Potential applications of ontologies
in web application testing

Ontologies are a means of capturing

knowledge of a domain in a machine
understandable manner. Therefore by using well-
developed ontologies, we would be able to write
intelligent methods that automate different tasks
and activities of the testing process. In this
section, we present some examples to show
potentials of using ontologies to automate web
application testing:
1. Using ontologies for test planning and Test

specification: Using an ontology that
provides the knowledge of different testing
activities and their order and relationships, it
is possible to specify the test plan in a

machine understandable language. For
instance, in the presence of such ontology,
by specifying that "system X must be tested
using black-box strategy", it can be inferred
that what type of tests, in what order, must
be performed on this system, and which test
criteria and test case generation method
should be used.

2. Using ontologies for semantic querying:
Using ontology in different testing activities,
such as test planning, test specification, test
execution and result evaluation, enable
automatic generation of the whole test
process documents in a machine-
understandable format. Therefore it will be
possible to retrieve test process information
using semantic queries. For instance, after
performing code coverage on an application,
it would be possible to ask the system which
classes or methods have nor been sufficiently
tested.

3. Using Ontology as an enabler: Using web
services for testing web based application,
especially large, distributed ones, seems a
good idea because of the interesting
properties that they have, such as being
loosely coupled, dynamic, and interoperable.
In such cases, i.e. using web services for
different activities in the testing process,
there is a potential for ontology to be utilized
for service definition, publication,
registration, advertisement and retrieval. In
addition to web services, agents are also a
good candidate for automating the test
process. In this view, ontologies can be used
more that just as a communication media,
making it possible to share the domain
knowledge between agents and make them
cooperate with each other. In addition,
agents can utilize the ontology to perform
their tasks more intelligently.

4. Using Ontology for test case generation:
Ontologies show great potentials to be used
for test case generation. Here, we just
mention some examples. These potentials can
be divided into two categories:

a. Test case generation based on the
software test ontology. For instance, based
on the test type that is to be performed, it
might be necessary to use different test
generation methods. E.g. when
performing security tests on a web
application, it is better to use SQL
injection or cross site scripting techniques
to generate test data, which is used to fill
form fields. However, when performing
functional testing, other techniques are
more appropriate.

b. Test case generation based on the domain
ontology of the application under test. For

 ٦

instance, while testing the registration
page of a web forum application, ontology
of the application domain- in this case a
web forum- can be used to generate
appropriate test data for registration form
fields. As an example, if a form field is
properly annotated with the term
"User.Age", it can be used for equivalence
partitioning of candidate test data for
entering in this field. If a form field is
annotated with "Pass.MinLen=6", this
information can be used to infer border
values for password length, so generating
good set of test data. As another example,
annotating a form field with term
“EmailAddress” and another field with
“CountryName”, enables generation of
different and specific test data.

5. Ontologies for test oracle: One of the main
obstacles in really and fully automating
software test process is the test oracle. As
mentioned in [26]," It is little use to execute a
test automatically if execution results must be
manually inspected to apply a pass/fail
criterion. Relying on human intervention to
judge test outcomes is not merely expensive,
but also unreliable". Ontologies can be used
for test oracle automation. An oracle must
judge on the result of a test execution,
deciding whether the test is passed or failed.
This judgment is based on a set of criteria,
which can be categorized and defined
formally, and hence can be to some extent
embedded in ontologies. Therefore, it is
possible to specify the evaluation criteria of
each test type in the ontology in order to be
used by the automated oracle to judge the test
results. For instance, while performing load
or performance test on a web application, test
results can be judged based on the delay of
the HTTP responses. Or, in some cases, test
results can be judged by inspecting absence
or presence of a special term in the HTTP
response. Also, HTTP status codes can be
used for this purpose. More complicated
judgments may also be automated. For
instance, it may be possible to specify in a
test specification, that if the test runs
successfully, a new record must be inserted
[deleted, or changed] in [from, in] table X of
database D. Of course, there may be some
cases which cannot be satisfied by a non-
human oracle, e.g. verifying how user-
friendly a system is.

5. Conclusion

In this paper we first presented a brief survey

of current works that have used ontology in the

software testing process. Then, the possible
applications of using ontologies in web
application testing were investigated.

It can be concluded that the full potential of
using ontologies for web application testing has
yet to be explored and it is an open area for
research and innovation to develop intelligent
methods and procedures for maximize the
automation of different activities involved in
software testing process.

Acknowledgement

This work has been supported by a grant by
Iran’s Telecommunication Research Center
(ITRC), which is hereby acknowledged.

References

[1]. G.A. Di Lucca, A.R. Fasolino, "Testing

web-based applications: The state of the art
and future trends", Information and Software
Technology 48:1172-1186, 2006.

[2]. Y. Wu, J. Offutt, “Modeling and testing
web-based applications”, GMU ISE
Technical Report, ISE-TR-02-08, 2002.

[3]. F. Ricca, P. Tonella, “Web Testing: a
Roadmap for the Empirical Research”,
WSE:63-70, 2005.

[4]. K. Li, M. Wu, “Effective GUI Test
Automation: Developing an Automated GUI
testing Tool”, Sybex publications, p20,
2005.

[5]. H. Zhu, “A Framework for Service-Oriented
Testing of Web Services”, COMPSAC,
2006.

[6]. T.R. Gruber, "A translation approach to
portable ontologies", Knowledge
Acquisition, 5(2):199-220, 1993.

[7]. R. Neches, R.E. Fikes, T. Finin, T.R.
Gruber, T. Senator, and W.R. Swartout,
"Enabling technology for knowledge
sharing", AI Magazine, 12(3):36-56, 1991.

[8]. H. J. Happel, S. Seedof, "Applications of
Ontologies in Software Engineering", 2nd
Int. Workshop on Semantic Web Enabled
Software Engineering (SWESE 2006).

[9]. R. Maamri, Z. Sahnoun, “MAEST: Multi-
Agent Environment for Software Testing”,
Journal of Computer Science, April, 2007.

[10]. TestLix Project:
http://projects.semwebcentral.org/projects/te
stlix/

[11]. The White Rose Grid e-Science Centre,
“Developing a Fault Ontology Engine for
the Testing and Evaluation of Service-
Oriented Architectures”, September, 2006.

 ٧

[12]. Y. Wang, X. Bai, J. Li, R. Huang,
“Ontology-Based Test Case Generation for
Testing Web Services”, ISADS, March
2007.

[13]. M. de los Angeles Martin, L. Olsina,
“Towards an ontology for software metrics
and indicators as the foundation for a
cataloging web system”, LA-WEB, 2003.

[14]. ISO/IEC 15939:2007 – “Systems and
Software Engineering - Measurement
Process”,
http://www.iso.org/iso/iso_catalogue/catalog
ue_tc/catalogue_detail.htm?csnumber=4434
4

[15]. ISO/IEC 9126-1:2001 – “Software
Engineering – Product Quality - Part 1:
Quality Model”,
http://www.iso.org/iso/iso_catalogue/catalog
ue_tc/catalogue_detail.htm?csnumber=2274
9

[16]. M. Genero, F. Ruiz, M. Piattini, C. Calero,
“Towards an Ontology for Software
Measurement”, SEKE 2003.

[17]. H. Zhu, “A Framework for Service-Oriented
Testing of Web Services”, COMPSAC
2006.

[18]. H. Zhu et al, “Developing A Software
Testing Ontology in UML for A Software
Growth Environment of Web-Based
Applications”, “Software Evolution with
UML and XML”, 2004, chapter 9.

[19]. Y. Kalfoglou, “Deploying ontologies in
Software Design”, Ph.D. thesis, Dept. of
Artificial Intelligence, University of
Edinburgh, 2000.

[20]. W3C Semantic Web Best Practices &
Deployment Working Group, "Ontology
Driven Architectures and Potential Uses of
the Semantic Web in Systems and Software
Engineering”, 2006.

[21]. C. Calero, F. Ruiz, M. Piattini, “Ontologies
for Software Engineering and Software
Technology”, Springer, 2006, chapter 1.

[22]. “Guide to the Software Engineering Body of
Knowledge”,
www.swebok.org/ironman/pdf/SWEBOK_G
uide_2004.pdf

[23]. Guide to the SWEBOK,
http://www.swebok.org/

[24]. IEEE Standard for Software Test
Documentation, 1998.

[25]. S. Cranefield, “UML and the semantic web”,
proceedings of International Semantic Web
Working Symposium (SWWS), 2001.

[26]. M. Pezz, M. Young, “Software Testing and
Analysis: Process, Principles and
Techniques”, 2008, section 17.5.

