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Abstract 
 
A procedure of total potential energy release rate is developed for a general FGM beam, which is 
considered as a double cantilever beam (DCB). The mechanical properties vary as a general 
function of thickness. The procedure is based on a technical engineering theory for calculation of 
strain energy release rate. By choosing a suitable displacement field based on second-order shear-
thickness deformation theory and using the principle of minimum total potential energy, the 
equilibrium equations are obtained. The energy release rate is obtained by using the J integral for 
the DCB model. The distribution of displacements and stresses are determined for a special case 
and the results are compared with the results of finite element method. This comparison shows 
good agreement between the results.  
The separation of J integral into modes I and II is carried out by decomposition of stress and strain 
fields from point symmetric to the crack plane. The separation technique is applicable for both 
symmetric and asymmetric geometry with respect to the crack plane. The results of J integral are 
compared with those of the other methods and present good agreement between the results. 
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1. Introduction 
 
Functionally graded materials (FGMs) possess properties that vary gradually with location within the 
material. As the use of FGMs increases, new methodologies have to be developed to characterize FGMs 
and also to design and analyze structural components made of these materials. The methods should be such 
that they can be incorporated into available methods with least amount of modifications. One such problem 
is that of determination of fracture parameters for FGMs. Fracture may occur as a result of accumulation of 
voids during processing, shock loading, or impact loading during service of the structure. Stress intensity 
factor and strain energy release rate are parameters to determine crack growth. The crack growth initiate, 
when the parameters reach to its critical limit. Then we can predict the fracture by determining these 
parameters. Both subjects of energy release rate and stress intensity factor have been studied by many 
researchers since the early 1960s. Most of them confined their research to homogeneous isotropic 
materials, some of them to homogeneous bimaterial or to orthotropic and very few to non-homogeneous 
materials [1]. By reviewing related papers on this subject it is seen that most of the methods are based on 
the finite element models. Analytical work on FGMs goes back as early as the late 1960s when soil was 
modeled as a nonhomogeneous material. Delale and Erdogan [2] analytically studied crack problem in an 
infinite plane where the elastic properties varied exponentially in the direction of the crack. Eischen [3] 
studied the crack-tip-singular behavior of the stress field in a nonhomogeneous infinite plane by using an 
eigenfunction expansion technique. Jain and Rousseau [4] studied crack tip stress field in FGMs with 
linearly varying properties using an elasticity solution. Anlas et al. [5] calculated stress intensity factor in 
FGMs. 
Among the various methods presented, there appears to be no straightforward method for calculating stress 



field and strain energy release rates under general loading conditions with a good degree of approximation. 
The main objective of the present study is to introduce an analytical model for fracture in FGM beams 
under general edge loading conditions, and to use this model for calculating strain energy release rate along 
with its separation into different modes of fracture.  
 
 
2. Theoretical formulation 
 
The geometry of the structure and loads are shown in Figure 1. 

 

 
 

Figure 1: Double cantilever beam, region I: -a ≤ x ≤ 0, 0 ≤ z ≤ h/2, region II: -a ≤ x ≤ 0, -h/2 ≤ z ≤0, 
region III: 0 ≤ x ≤ l, -h/2 ≤ z ≤ h/2 

 
The geometry is divided into three regions (i.e., regions I, II, and III). The crack length is a and the total 
length of the beam is a+l. The mechanical properties vary in z-direction and are constant in x-direction. A 
second-order shear-thickness deformation theory is used for modeling the displacement field as follows: 
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where u1, u2, and u3 are displacement components in x-, y-, and z-directions respectively. To develop a 
beam theory it is needed to assume that σy=0 [6]. Using the principle of minimum total potential energy, 
equilibrium equations can be shown to be: 
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The moment and stress resultants are as follows: 
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where the rigidity terms are defined as: 
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There are five coupled second-order ordinary differential equations for each region which is solvable for 
any kind of boundary conditions. There are also five force boundary conditions at x=-a in region I. 
Similarly there are five force boundary conditions for region II. By the assumption of a built in edge in 
region III at x=l, there will be five displacement boundary conditions. The displacement continuity 
conditions at x=0, where three regions are attached together, make ten displacement boundary conditions. 
Finally there will be five force continuity conditions at x=0. 
 
 
3. Strain energy release rate 
 
Crack growth can be described by the energy method. In the linear elastic fracture mechanics (LEFM), the 
strain energy release rate which is used as a criterion for determining crack growth, is defined as: 
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where W is the external work done on the body, U is the total strain energy, and A is the crack area. In 
LEFM, the strain energy release rate is identical to path independent J integral which is defined as: 
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where Γ is an arbitrary counterclockwise path, W is the strain energy density per unit volume, nj’s are the 
components of unit outward normal vector to the path, σij is the stress tensor, and ui’s are the displacement 
components [7]. Upon substitution of W=σij εij/2, strains, and displacements into Equation (7) and 
integrating along an arbitrary path as seen in Figure 2, the J integral can be obtained: 
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where J1, J2, and J3 are the J integrals along the path x=x1 at region I, x=x1 at region II, and x=x2 at region 
III. 

 

 
 

Figure 2: Path of integration 
 

It is to be noted that since the traction vector vanishes on the horizontal divisions of the prescribed path, the 
J integral also vanishes on these divisions of the path. To this end, the integration path is summarized only 
to the vertical divisions [8]. 
 
 
4. Separation of mixed mode J integral to modes I and II 
 
In the mixed mode fracture, the value of J can be decomposed into three components as follows: 
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where I, II, and III denote the three fracture modes. In the decomposition method the modes I, II, and III of 
J integral are directly obtained from modes I, II, and III stresses and displacements. To this end, the stress 
and strain products are obtained from points symmetric to the crack plane [9]. Then stress can be written as: 
 
          ( ) / 2 ( ) / 2u u d u dσ σ σ σ σ= + + − ,    ( ) / 2 ( ) / 2d u d u dσ σ σ σ σ= + − −                (10) 
 
where σu and σd are the stress tensors up and down of the crack surface. The first term in Equations (10) is 
the symmetric part of stress which is concerned with mode I of fracture and the second one is the anti-
symmetric part which is concerned with mode II of fracture. 
 
 
5. Numerical results and discussions 
 
In this section numerical study of an FGM beam will be made based on the mentioned theory. The FGM 
chosen for the study consists of Ti-6Al-4V (metal) and ZrO2 (ceramic) with the following properties [10]: 
Ti-6Al-4V: 66.2 GPaE = ,   υ=0.321,      ZrO2: 117 GPaE = ,   υ=0.321 
The properties change smoothly from Ti-6Al-4V on the bottom surface to ZrO2 on the top surface of the 
beam. Without loss of generality, a linear distribution of mechanical properties is considered for the study. 
It is assumed that h=5 mm, a=35 mm, and l=100 mm. Here for brevity only one mode of loading is 
considered. The loading conditions of the example are as follows: 
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It must be noted that the accuracy of the results of this theory can be further enhanced by using higher-
order terms in the expansion used for the displacement field or by using an improvement in the present 
theory. For the DCB specimen the actual distribution of u3 on the thickness of the beam, require at least a 
third-order polynomial with respect to z-coordinate. On the other hand, in the present theory, a first-order 
polynomial can not be a good approximation for u3. As a result εz and σz don’t have enough accuracy. Then 
in the improved theory, the effect of εz on σx is neglected and the compliance matrix is considered as 
follows: 
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In this section the results obtained from SSDT and improved-SSDT (ISSDT) are also compared with FEM 
results of ANSYS. For the DCB specimen displacements and stresses at the middle plane of the beam (i.e., 
the crack plane, at z=0) are compared with FEM results in Figures 3-5. The J integral is computed along 
paths with various distances from crack tip which previously named as x1 and x2 and the results are 
presented in Figure 6a. It is seen that the convergence of J integral will occur in a path far away from the 
crack tip. Figure 6b presents the amounts of J integral and strain energy release rate versus crack length. 
For determining G by FEM data, at first the stiffness of the beam for each load is computed and then G is 
calculated using the following relation which is used for a structure with constant external loads [11]: 
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where Δ is the displacement of the load point and k is the stiffness. It is seen that fairly good agreements 



exist among the various results. 
 

  
(a)  (b) 

Figure 3: (a) Transverse deflection and (b) longitudinal stretching along specimen length at midplane 
 
 

  
(a) (b) 

Figure 4: Longitudinal normal stress σx along specimen length at midplane (a) in region I and  
(b) in region II 
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Figure 5: (a) Longitudinal normal stress σx and (b) interlaminar normal stress σz along specimen length 
at midplane 



 

  
(a) (b) 

Figure 6: (a) Convergence of J integral and (b) J integral and G versus crack length 
 
 
6. Conclusions    
 
In this study, displacement and stresses in the cracked FGM beam are computed under general edge load 
conditions. The analysis treats the cracked beams as three beams joined together at the crack tip. A 
displacement field consistent with the physical deformation field is used in the minimum total potential 
energy principle for obtaining the equilibrium equations. After obtaining analytical solutions for the 
equilibrium equations, the strain energy release rate is obtained by using the definition of the J integral. The 
strain energy release rate is decomposed into fracture modes. The results are compared with FEM results. It 
is found that strain energy release rate increases by increasing crack length. 
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