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Abstract 
 
In this paper, within the displacement field of the first-order shear deformation theory, free 
vibrations of cross-ply composite rectangular plates are studied and the natural frequencies 
and dynamic interlaminar stresses are obtained. In the theoretical formulations the effects of 
all the rotational inertia terms are considered. Also the change in the plate thickness is taken 
into account due to its important role in the edge effects. The obtained equations are solved 
analytically using the state-space approach for the case of free vibration. The accuracy and 
effectiveness of the present theory are demonstrated by comparing the results of the first-
order theory with those obtained from the finite element method. 
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1. Introduction 
 
Laminated composite plates are being increasingly used in aeronautical and aerospace industry as well 
as in other fields of modern technology. As an efficient use a good understanding of their structural 
and dynamical behavior and also a verified consideration of the deformation characteristics, stress 
distribution, natural frequencies, and buckling loads under various load conditions are expected.  
Several representative researchers had surveyed the development of the study on vibrations of 
composite laminated plates. It is possible to find an analytical solution for the dynamic and static 
behavior of cross-ply laminated plates subjected to simply supported boundary conditions at their 
opposite two edges and different boundary conditions at the remaining ones. For these types of 
problems, Reddy and Khedir [1] developed a Levy-type solution in conjunction with the state-space 
technique on the basis of a parabolic shear deformation theory. Aydogdu and Timarci [2] concerned 
the vibration analysis of cross-ply laminated square plates subjected to different sets of boundary 
conditions. Kant and Swaminathan [3] applied a higher-order refined theory to free vibration of 
composite laminates and sandwich plates with simply supported boundary conditions. Using the 
modified complementary energy principle, Afshari and Widera [4] developed a series of plate elements 
for free vibration of composite laminated plates by the Mindlin thin plate theory. 
One of the main causes of failure of composite laminated structures is delamination damage, which is 
significantly derived from interlaminar stresses. Previous researches were mainly limited to the 
interlaminar stress distributions in laminated structures under static loads, while response histories and 
distribution of dynamic interlaminar stresses were seldom mentioned. Jane and Hong [5] determined 
the interlaminar stresses in a laminated rectangular orthotropic plate with four sides simply supported 
during free vibration by using the integration method involving the dynamic inertia terms and 
displacements. Wang et al. [6] studied the response histories and distribution of dynamic interlaminar 
stresses in laminated plates with simple and fixed supports, subjected to free vibration and thermal load 
but the change in the plate thickness which has significant effect on the dominant interlaminar stresses 
is neglected in these studies. 
In this paper, an analytical formulation is developed for the free vibration analysis of general cross-ply 
laminated composite plates within the framework of the first-order shear deformation theory. The 
solutions are obtained analytically and the natural frequencies and dynamic interlaminar stresses are 
determined. In the theoretical formulations the effects of all the rotational inertia terms are considered. 
Also the change in the plate thickness is taken into account due to its important role in the edge effects. 



2. Mathematical formulations 
 
It is intended here to determine the interlaminar stresses in a general cross-ply laminate subjected to 
free vibration. The geometry of the laminate is shown in Figure 1. The formulation is restricted to 
linear elastic material behavior and small strain and displacements. 
 

 
Figure 1: Laminate geometry and coordinate system. 

 
2.1. Displacement field and strains 
 
In order to approximate the three-dimensional elasticity problem to a two-dimensional plate problem, 
the displacement components ( )tzyxu ,,,1 , ( )tzyxu ,,,2 , and ( )tzyxu ,,,3  at any point in the plate 
space are expanded in a Taylor’s series in terms of thickness coordinate. The displacement field of the 
first-order shear deformation theory (FSDT) may be assumed as 
 

( ) ( ) ( )tyxztyxutzyxu x ,,,,,,,1 ψ+= ,  ( ) ( ) ( )tyxztyxvtzyxu y ,,,,,,,2 ψ+=   
( ) ( ) ( )tyxztyxwtzyxu z ,,,,,,,3 ψ+=   (1) 

 
It is to be noted that the elasticity solution indicates that the transverse shear stress vary parabolically 
through the plate thickness. This requires the use of shear correction factors. Furthermore, the 
transverse normal strain may vary nonlinearly through the plate thickness. 
In Eqs. (1)  1u , 2u , and 3u  are displacement components in the x, y, and z directions respectively, u 
and v are the in-plane displacements and w is the transverse displacement of a point (x,y) on the middle 
plane. The functions xψ  and yψ  are the rotations of a normal transverse to the middle plane about y- 
and x-axes, respectively, and zψ  is the thickness variability parameter.  
By substitution of the displacement field in (1) into the strain-displacement relations [7] of elasticity, 
the following results will be obtained 
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2.2 Equations of motion 
 
The displacement field in Eqs. (1) can be used to drive the equations of motion by means of 
Hamilton’s principal [8]. The equations of motion (Euler-Lagrange equations) are as follows  
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where yN , zN , xyN , xM , yM , and xyM  are the stress resultants and xQ  and yQ  are the transverse 
shear force resultants. Also 1I , 2I , and 3I  are the corresponding inertia terms. 
 
2.3. Constitutive equations  
 
The linear constitutive relations for the kth orthotropic lamina, with fiber orientations of 0○ and 90○ 
only, with respect to the laminate coordinate axes (see Figure 1) are given by [9] 
 

{ }( ) ( ) { }( )[ ]k kkCσ ε=  (5) 
 
Here, the matrix ( )[ ] kC  is called the off-axis stiffness matrix. Upon substitution of Eqs. (2) into Eq. (5) 
and the subsequent results into Eqs. (4) and (3), the displacement equations of motion will be obtained. 
 
 
3. Analytical solutions 
 
Here the exact solution of Eqs. (3) for cross-ply rectangular plates are considered. By omitting the 
applied transverse load, the equations of free vibration will be obtained. The process of solving the 
governing differential equations consists of Levy’s formulations [9]. Levy's solution exists when at 
least two opposite edges of the plate have simple supports. The remaining edges may have simple, 
clamped or free boundary conditions. To this end, it is assumed here that the edges of the plate at x=0 
and x=a have the following boundary conditions 
 

0====== wMvN zyxx ψψ  (6) 
 
It is noted that the boundary conditions in (6) will identically be satisfied if the following expressions 
for the displacement components are assumed 
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where m m aα π= with m being the Fourier integer. Upon Substitution of Eqs. (7) into the governing 
equations of motion, the set of partial differential equations are transformed to a set of ordinary 
differential equations. An alternative method of solving of the obtained equations is provided by the 
state-space approach. By the aid of this approach, the six ordinary second-order differential equations 
can be expressed to the following system of twelve first-order ordinary equations 
 
 

 
The general solution of Eq. (8) is given by 

{ } [ ]{ }Y T Y′ =  (8) 



{ } [ ][ ]{ }mnmnmnmn KQEY =  (9) 
 
where  
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In Eq. (9) [ ]mnE  and λimn (i = 1,2,…,12) are, respectively, the matrix of eigenvectors and eigenvalues 
of the coefficient matrix [T] which, in general, must be regarded to have complex values. Also {Kmn} 
being 12mn arbitrary unknown constants of integration to be found by imposing the boundary 
conditions at 2y b= ± .  Three different boundary conditions in the FSDT that may be exist at 

2y b= ±  are as follows 
 

Free (F): 0====== yyxyyyxy RMMQNN   
Simple support (S): 0====== wMuN zxyy ψψ   
Clamped (C): 0====== zyxwvu ψψψ  (11) 

 
Imposing the boundary conditions at 2y b= ±  yields  
 

[ ]{ } { }0=mnmn KM  (12) 
 
For nontrivial solution, the determinate of the coefficient matrix in (12) should be zero. The roots of 
this equation for each (m,n) are the natural frequencies. Next, the mode shapes of vibration for each 
natural frequency may be obtained from Eqs. (12) and (9). 
 
 

4. Numerical results and discussion 
 
In what follows several numerical examples are presented for symmetric and antisymmetric cross-ply 
laminates subjected to free vibrations. The laminates have length a, width b, and thickness h (see 
Figure 1). Each lamina is assumed to be of the same thickness /kh h N= , where N is the number of 
laminae. The non-dimensional natural frequencies ω  of general cross-ply composite plates with 
simple supports are considered for comparison. The non-dimensional natural frequencies are tabulated 
in Table 1 for antisymmetric cross-ply square laminates with two, four, six, and ten layers. The 
orthotropic material properties of the individual layers are assumed to be =21 / EE open, 32 EE = , 

21312 6.0 EGG == , 223 5.0 EG = , 25.0231312 === ννν  (Material I). 
Figure 2 shows the distributions of various in-plane and out-of-plane stresses through the y direction in 
a [0/90/0] laminate at / 4x a= , with different boundary conditions. All stress distributions compared 
with the finite element analysis (FEA) and excellent agreements between the FSDT and FEA are 
found. The orthotropic material properties of individual layers in this example are 10/ 21 =EE , 

155002 =E MPa , 2231312 28.0 EGGG === , 248.0132312 === ννν , 1380=ρ  3kg/m  (Material II). 
Figure 3 illustrates the variations of interlaminar shear stress yzσ  through the y direction of a [90/0/90] 

SFSF laminate at 4/ax =  for material I, a/b=1 and 40/ 21 =EE .  It is seen that the magnitude of yzσ  
is naturally increasing when approaching the free edge. Figure 4 presents the variations of interlaminar 
shear stress xzσ  through the y direction of a [0/90/0] SSSF laminate at 4/ax =  and various values of 

21 / EE  for martial I, a/b=1 and a/h=10. The magnitude of xzσ is naturally increasing when 
approaching the free edge. It is found that the magnitudes of yzσ  and xzσ  are increased in the 
boundary layer region and exhibit singular behaviour near the free edge.  



Table 1: Non-dimensional fundamental frequencies 2
2( ) /a h E=ω ω ρ  for a square simply 

supported antisymmetric cross-ply laminated plates with 5/ =ha  
 21 / EE   

Laminate Source 3 10 20 30 40 

[0/90] Present 6.3609 7.0426 7.7850 8.3855 8.8873 
 Noor [11] 6.2578 6.9845 7.6745 8.1763 8.5625 
 Reddy [10] 6.2169 6.9887 7.8210 8.5050 9.0871 
 Kant-Swaminathan [4] 6.2336 6.9363 7.6883 8.2570 8.7097 

[0/90]2 Present 6.6530 8.3034 9.7345 10.6506 11.2930 
 Noor [11] 6.5455 8.1445 9.4055 10.1650 10.6798 
 Reddy [10] 6.5008 8.1954 9.6265 10.5348 11.1716 
 Kant-Swaminathan [4] 6.4319 8.1010 9.4338 10.2463 10.7993 

[0/90]3 Present 6.7051 8.4939 9.9853 10.9106 11.5461 
 Noor [11] 6.6100 8.4143 9.8398 10.6958 11.2728 
 Reddy [10] 6.5552 8.4041 9.9175 10.8542 11.5007 
 Kant-Swaminathan [4] 6.4319 8.3372 9.8012 10.6853 11.2838 

[0/90]5 Present 6.7315 8.5873 10.1048 11.0323 11.6630 
 Noor [11] 6.6458 8.5625 10.0843 11.0027 11.6245 
 Reddy [10] 6.5842 8.5126 10.0674 11.0197 11.6730 
 Kant-Swaminathan [4] 6.5177 8.4680 10.0107 10.9445 11.5789 
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       (c) 
Figure 2: Distributions of (a) interlaminar normal stress zσ  of a SFSF laminate (b) interlaminar shear 

stress yzσ  of a fully simply supported laminate and (c) interlaminar shear stress xzσ  of a SCSF 
laminate through the y direction. 
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Figure 3: Distributions of interlaminar shear 
stress yzσ  through the y direction of a [90/0/90] 

SFSF laminate 

Figure 4: Distributions of interlaminar shear 
stress xzσ  through the y direction of a [90/0/90]  

SSSF laminate 



Typical distributions of interlaminar normal stress zσ through y direction for one, four, six, and eight 
layers antisymmetric cross-ply SCSC laminate at 4/ax =  are shown in Figure 5. It is noted that the 
magnitude of zσ  is increased with increasing of number of laminae (N) while thickness of laminate (h) 
is constant.  Distributions of in-plane normal stress yσ  through the y direction at 4/ax =  for third 
and fourth vibration modes of a fully simply supported three-layer symmetric cross-ply laminate are 
shown in Figure 6. In Figures 5 and 6 material properties are the same as material I while 20/ 21 =EE , 
a/b=1 and a/h=10. 
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Figure 5: Distributions of interlaminar normal 

stress zσ  through the y direction of SCSC 
antisymmetric cross-ply laminates 

Figure 6: Distributions of in-plane normal stress 
yσ  through the y direction of a fully simply 

supported [90/0/90] laminate 
 
 
5. Conclusions 
 
In this paper, an analytical method is applied to calculate the response and distribution of dynamic 
interlaminar stresses in composite laminated plates with two opposite simply supported edges, 
subjected to free vibration. Within the framework of the first-order shear deformation theory and with 
considering all of the inertia terms and the transverse normal strain the equations of motion are 
obtained and a generalized Levy-type solution are developed. Numerical results show that dynamic 
interlaminar stresses are mainly determined by the vibration modes. It is found that the present results 
have excellent agreements with those obtained by using finite element method. These close agreements 
verify the accuracy of the first-order shear-thickness theory which is used in this case study.  
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