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Abstract

It is well known that a mismatch in elastic properties between adjacent plies of composite
laminates causes interlaminar stress concentrations near the edges of a laminate where we have
material discontinuity. These stresses can initiate heterogeneous damage in the forms of
delamination and transverse cracking and may cause the damage to propagate to a substantial
region of the laminate, resulting in a significant loss of strength and stiffness. In the edge zone
of the laminate, it has been shown that the state of stresses is three-dimensional in nature and
the classical lamination theory cannot be employed.

In this paper, within the displacement field of the first-order shear deformation theory,
free vibrations of rectangular cross-ply composite plates are studied and the natural frequencies
and dynamic interlaminar stresses are obtained. In the theoretical formulations the effects of all
the rotational inertia terms are considered. Also the change in the plate thickness is taken into
account due to its important role in the edge effects. The equations of motion are derived by
using Hamilton’s principle. It is assumed that the plates have two simply supported opposite
edges and the remaining boundary conditions are arbitrary. The obtained equations are solved
analytically using the state-space approach for the case of free vibration. First the natural
frequencies and the mode shapes are obtained and then the interlaminar stresses are determined
by integrating the three-dimensional local equations of motion and utilizing given boundary
conditions. The accuracy and effectiveness of the present theory in describing the localized
three-dimensional effects are demonstrated by comparing the results of the first-order theory
with those obtained from the finite element method. It is found that the theory can predict the
natural frequencies and the dynamic interlaminar stresses. The theoretical analyses and results
are of certain significant in determining dynamic interlaminar stresses in the case of transient
loadings and also in practical engineering applications.
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Abstract

In this paper, within the displacement field of the first-order shear deformation theory, free
vibrations of cross-ply composite rectangular plates are studied and the natural frequencies
and dynamic interlaminar stresses are obtained. In the theoretical formulations the effects of
all the rotational inertia terms are considered. Also the change in the plate thickness is taken
into account due to its important role in the edge effects. The obtained equations are solved
analytically using the state-space approach for the case of free vibration. The accuracy and
effectiveness of the present theory are demonstrated by comparing the results of the first-
order theory with those obtained from the finite element method.
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1. Introduction

Laminated composite plates are being increasingly used in aeronautical and aerospace industry as well
as in other fields of modern technology. As an efficient use a good understanding of their structural
and dynamical behavior and also a verified consideration of the deformation characteristics, stress
distribution, natural frequencies, and buckling loads under various load conditions are expected.
Several representative researchers had surveyed the development of the study on vibrations of
composite laminated plates. It is possible to find an analytical solution for the dynamic and static
behavior of cross-ply laminated plates subjected to simply supported boundary conditions at their
opposite two edges and different boundary conditions at the remaining ones. For these types of
problems, Reddy and Khedir [1] developed a Levy-type solution in conjunction with the state-space
technique on the basis of a parabolic shear deformation theory. Aydogdu and Timarci [2] concerned
the vibration analysis of cross-ply laminated square plates subjected to different sets of boundary
conditions. Kant and Swaminathan [3] applied a higher-order refined theory to free vibration of
composite laminates and sandwich plates with simply supported boundary conditions. Using the
modified complementary energy principle, Afshari and Widera [4] developed a series of plate elements
for free vibration of composite laminated plates by the Mindlin thin plate theory.

One of the main causes of failure of composite laminated structures is delamination damage, which is
significantly derived from interlaminar stresses. Previous researches were mainly limited to the
interlaminar stress distributions in laminated structures under static loads, while response histories and
distribution of dynamic interlaminar stresses were seldom mentioned. Jane and Hong [5] determined
the interlaminar stresses in a laminated rectangular orthotropic plate with four sides simply supported
during free vibration by using the integration method involving the dynamic inertia terms and
displacements. Wang et al. [6] studied the response histories and distribution of dynamic interlaminar
stresses in laminated plates with simple and fixed supports, subjected to free vibration and thermal load
but the change in the plate thickness which has significant effect on the dominant interlaminar stresses
is neglected in these studies.

In this paper, an analytical formulation is developed for the free vibration analysis of general cross-ply
laminated composite plates within the framework of the first-order shear deformation theory. The
solutions are obtained analytically and the natural frequencies and dynamic interlaminar stresses are
determined. In the theoretical formulations the effects of all the rotational inertia terms are considered.
Also the change in the plate thickness is taken into account due to its important role in the edge effects.



2. Mathematical formulations

It is intended here to determine the interlaminar stresses in a general cross-ply laminate subjected to
free vibration. The geometry of the laminate is shown in Figure 1. The formulation is restricted to
linear elastic material behavior and small strain and displacements.
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Figure 1: Laminate geometry and coordinate system.
2.1. Displacement field and strains

In order to approximate the three-dimensional elasticity problem to a two-dimensional plate problem,
the displacement components ul(x, y,z,t), uz(x, y,z,t), and u3(x, y,z,t) at any point in the plate

space are expanded in a Taylor’s series in terms of thickness coordinate. The displacement field of the
first-order shear deformation theory (FSDT) may be assumed as

uj (x,y,z,t): u(x,y,t)+ ZY (x,y,t), uz(x,y,z,t): v(x,y,t)+ zt//},(x,y,t)
w3 (x,3,2,6)= w(x,3,0)+ 2y (x,3.1) (1)

It is to be noted that the elasticity solution indicates that the transverse shear stress vary parabolically
through the plate thickness. This requires the use of shear correction factors. Furthermore, the
transverse normal strain may vary nonlinearly through the plate thickness.

In Egs. (1) u,, u,, and u, are displacement components in the x, y, and z directions respectively, u
and v are the in-plane displacements and w is the transverse displacement of a point (x,y) on the middle
plane. The functions y . and y, are the rotations of a normal transverse to the middle plane about y-
and x-axes, respectively, and y_ is the thickness variability parameter.

By substitution of the displacement field in (1) into the strain-displacement relations [7] of elasticity,
the following results will be obtained
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2.2 Equations of motion

The displacement field in Egs. (1) can be used to drive the equations of motion by means of
Hamilton’s principal [8]. The equations of motion (Euler-Lagrange equations) are as follows
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with

(Nx,Ny,NZ,ny):J._hh//zz(ax,ay,az,axy)dz, (Mx,My;Mxy):J-_/lh//zz(o-x’o-yﬂo-xy)zalz

(Qx,Qy): jjlljj2<0xz,ayz Iz (Rx,Ry>: jjl,;j2<0xz’0yz )zdz R (11,12,13): I_}llj/zzp(l’z,zz )dz 4)

where N,,N.,N,, ,M,,M,, and M, are the stress resultants and O, and Q, are the transverse

shear force resultants. Also /;, /,, and I, are the corresponding inertia terms.

2.3. Constitutive equations

The linear constitutive relations for the kth orthotropic lamina, with fiber orientations of 0° and 90°
only, with respect to the laminate coordinate axes (see Figure 1) are given by [9]

{O.}(k) :[C](k){g}(k) 5)

Here, the matrix [C ](k) is called the off-axis stiffness matrix. Upon substitution of Egs. (2) into Eq. (5)
and the subsequent results into Egs. (4) and (3), the displacement equations of motion will be obtained.

3. Analytical solutions

Here the exact solution of Egs. (3) for cross-ply rectangular plates are considered. By omitting the
applied transverse load, the equations of free vibration will be obtained. The process of solving the
governing differential equations consists of Levy’s formulations [9]. Levy's solution exists when at
least two opposite edges of the plate have simple supports. The remaining edges may have simple,
clamped or free boundary conditions. To this end, it is assumed here that the edges of the plate at x=0
and x=a have the following boundary conditions

N,=v=M_ =y, =y.=w=0 6)

It is noted that the boundary conditions in (6) will identically be satisfied if the following expressions
for the displacement components are assumed
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where @,, =m/a with m being the Fourier integer. Upon Substitution of Egs. (7) into the governing

equations of motion, the set of partial differential equations are transformed to a set of ordinary
differential equations. An alternative method of solving of the obtained equations is provided by the
state-space approach. By the aid of this approach, the six ordinary second-order differential equations
can be expressed to the following system of twelve first-order ordinary equations

o=l ®

The general solution of Eq. (8) is given by
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In Eq. (9) [E,,, | and dimn (i = 1,2,...,12) are, respectively, the matrix of eigenvectors and eigenvalues

of the coefficient matrix [7] which, in general, must be regarded to have complex values. Also {K,,}
being 12mn arbitrary unknown constants of integration to be found by imposing the boundary
conditions at y =+b/2. Three different boundary conditions in the FSDT that may be exist at

y =1b/2 are as follows

Free (F): Ny=N,=0,=M,,=M,=R,=0
Simple support (S): N, =u=M,=y, =y, =w=0
Clamped (C): u=v=w=y, =y, =y, =0 (11)

Imposing the boundary conditions at y =+5/2 yields

[an ]{Kmn}: {0} (12)

For nontrivial solution, the determinate of the coefficient matrix in (12) should be zero. The roots of
this equation for each (m,n) are the natural frequencies. Next, the mode shapes of vibration for each
natural frequency may be obtained from Eqgs. (12) and (9).

4. Numerical results and discussion

In what follows several numerical examples are presented for symmetric and antisymmetric cross-ply
laminates subjected to free vibrations. The laminates have length @, width b, and thickness 4 (see
Figure 1). Each lamina is assumed to be of the same thickness/#, =4 /N , where N is the number of
laminae. The non-dimensional natural frequencies @ of general cross-ply composite plates with
simple supports are considered for comparison. The non-dimensional natural frequencies are tabulated
in Table 1 for antisymmetric cross-ply square laminates with two, four, six, and ten layers. The
orthotropic material properties of the individual layers are assumed to be E,/E, =open, E, =E,,
G, =G, =0.6E,, G, =0.5E,, v, =v;; =v,, =0.25 (Material I).

Figure 2 shows the distributions of various in-plane and out-of-plane stresses through the y direction in
a [0/90/0] laminate at x =a /4, with different boundary conditions. All stress distributions compared
with the finite element analysis (FEA) and excellent agreements between the FSDT and FEA are
found. The orthotropic material properties of individual layers in this example are E,/E, =10,
E, =15500 MPa, Gy, =G5 =Gy3 =0.28E,, v, =vy3 =13 =0.248, p=1380 kg/m3 (Material II).
Figure 3 illustrates the variations of interlaminar shear stress o, through the y direction of a [90/0/90]
SFSF laminate at x=a/4 for material I, a/b=1 and E,/E, =40. Itis seen that the magnitude of o,
is naturally increasing when approaching the free edge. Figure 4 presents the variations of interlaminar
shear stress o, through the y direction of a [0/90/0] SSSF laminate at x =a/4 and various values of
E,/E, for martial I, a/b=1 and a/h=10. The magnitude of o is naturally increasing when
approaching the free edge. It is found that the magnitudes of o, and o, are increased in the

¥
boundary layer region and exhibit singular behaviour near the free edge.



Table 1: Non-dimensional fundamental frequencies @ = w(a’ / h)\p/E, forasquare simply

supported antisymmetric cross-ply laminated plates with a/h =5

E /E,

Laminate Source 3 10 20 30 40

[0/90] Present 63609  7.0426  7.7850 83855  8.8873
Noor [11] 62578 69845  7.6745  8.1763  8.5625
Reddy [10] 62169 69887  7.8210 85050  9.0871
Kant-Swaminathan [4] ~ 6.2336  6.9363  7.6883 82570  8.7097

[0/90], Present 66530 83034  9.7345  10.6506  11.2930
Noor [11] 6.5455  8.1445 94055  10.1650  10.6798
Reddy [10] 65008  8.1954  9.6265 105348  11.1716
Kant-Swaminathan [4] ~ 6.4319  8.1010  9.4338  10.2463  10.7993

[0/90]5 Present 67051 84939 99853 109106  11.5461
Noor [11] 6.6100 84143 98398  10.6958  11.2728
Reddy [10] 65552 84041 99175  10.8542  11.5007
Kant-Swaminathan [4] 64319 83372 9.8012  10.6853  11.2838

[0/90]; Present 67315 85873  10.1048  11.0323  11.6630
Noor [11] 6.6458 85625  10.0843  11.0027  11.6245
Reddy [10] 65842 85126  10.0674 11.0197  11.6730

Kant-Swaminathan [4] 6.5177 8.4680 10.0107  10.9445  11.5789
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Figure 2: Distributions of (a) interlaminar normal stress o, of a SFSF laminate (b) interlaminar shear
stress o, of a fully simply supported laminate and (¢) interlaminar shear stress o,. of'a SCSF
laminate through the y direction.
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Typical distributions of interlaminar normal stress o, through y direction for one, four, six, and eight
layers antisymmetric cross-ply SCSC laminate at x =a/4 are shown in Figure 5. It is noted that the
magnitude of o, is increased with increasing of number of laminae (N) while thickness of laminate (/)

is constant. Distributions of in-plane normal stress o,

and fourth vibration modes of a fully simply supported three-layer symmetric cross-ply laminate are
shown in Figure 6. In Figures 5 and 6 material properties are the same as material [ while £, / E, =20,

a/b=1 and a/h=10.
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Figure 5: Distributions of interlaminar normal Figure 6: Distributions of in-plane normal stress
stress o, through the y direction of SCSC o, through the y direction of a fully simply
antisymmetric cross-ply laminates supported [90/0/90] laminate

5. Conclusions

In this paper, an analytical method is applied to calculate the response and distribution of dynamic
interlaminar stresses in composite laminated plates with two opposite simply supported edges,
subjected to free vibration. Within the framework of the first-order shear deformation theory and with
considering all of the inertia terms and the transverse normal strain the equations of motion are
obtained and a generalized Levy-type solution are developed. Numerical results show that dynamic
interlaminar stresses are mainly determined by the vibration modes. It is found that the present results
have excellent agreements with those obtained by using finite element method. These close agreements
verify the accuracy of the first-order shear-thickness theory which is used in this case study.
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