
NONLINEAR EDGE EFFECT ANALYSIS OF LAMINATED BEAMS 
WITH PIEZOELECTRIC LAYERS 

 
 

Masoud Tahani1,2 and Mojtaba Izadi1  
 

1 Department of Mechanical Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, 
Mashhad, Iran 

2 Iranian Academic Center for Education, Culture and Research (ACECR), Mashhad Branch, Iran. 
mtahani@ferdowsi.um.ac.ir 

 
ABSTRACT 

An analytical solution is presented to determine the interlaminar stresses of general cross-ply laminated 
beams with piezoelectric layers. The displacement field is assumed within the framework of a third-order 
shear deformation beam theory. The strain components are obtaind using von-Kàrmàn nonlinear strain-
displacement relations. Also, it is assumed that the electric potential varies linearly through the thickness 
of each layer. Using the principle of minimum total potential energy, equilibrium equations are obtained in 
terms of stress resultants. Finally, a set of ordinary differential equations with constant coefficients are 
obtained. The solutions of the equations are the unknown assumed functions for displacement field. 
Numerical results clearly indicate the singular behavior of interlaminar normal and shear stresses near the 
ends of the laminated beam. 

 
1. INTRODUCTION 
Composite materials produce properties that cannot be achieved by their constituents 
alone. Some of the properties are stiffness, weight reduction, corrosion resistance, 
thermal properties, fatigue life, and wear resistance. These properties made the use of 
composites increasing steadily.  
The use of sensors and actuators to perform a self-controlling and self-monitoring 
system has produced a new class of structures known as “smart structures”. Smart 
structures incorporating piezoelectric devices to sense and actuate the structure could be 
applied in many advanced engineering applications, such as aircraft structures, satellites, 
large space structures and so forth [1]. A great enhancement to smart structures has been 
given by advanced fiber reinforced composites. Laminated composites are very well 
suited to include a network of piezoelectric sensors and actuators and then form a smart 
structure. To advance this technology further and apply it to complex and realistic 
products, a thorough and comprehensive knowledge of piezoelectric composites is 
necessary.  
Also, there are some problems which need to be overcome before piezoelectric 
composites can be widely used. Among the problems, delamination has received very 
much attention due to its significant effect on strength and stiffness. Delamination is 
caused by high interlaminar stresses on the interface of composite layers. Certain 
interlaminar stress components exhibit a mathematical singular behavior at the edges of 
a laminated structure. This effect is commonly called the edge effect, the investigation of 
which has prefaced by the pioneering work of Pipes and Pagano [2] who employed a 
finite differences technique. To date many analytical and numerical approaches have 
been developed and applied. A comprehensive discussion of the literature on the 
interlaminar stress problem in composite laminates is given in [3]. 
However, there are not much many studies including the edge effect of piezoelectric 
composite laminated structures. The coupled piezoelectric analysis of the free edge 
effect has been performed by Davi and Milazzo [4], who investigated a [±45°]s laminate 



under several loading conditions using boundary element formulation. In that work, no 
significant influence of piezoelectric coupling on the interlaminar stresses could be 
detected. Artel and Becker [5] analyzed the influence of piezoelectric coupling on 
interlaminar stresses and electric field near the edge, using the finite element method. 
They showed that for the cross-ply laminates under consideration, some interlaminar 
stress components near the edge become singular and in the coupled analysis case are 
usually of higher magnitude than in the uncoupled analysis. Erturk and Tekinalp [6] and 
also Zhen and Wanji [7] introduced new types of elements, for finite element approach, 
and analyzed the interlaminar stresses of piezoelectric composite laminated beams and 
plates. Finally, the study of the interlayer stresses and their concentrations near the two 
ends of a laminated beam of piezoelectric and elastic material has been performed by 
Yang et. al. [8] using 3D finite element method. They addressed the influence of 
geometrical and material parameters on the edge effect. 
As it is seen, yet there are no analytical investigations including the edge effect in 
composite laminated structures with piezoelectric layers. In this paper an analytical 
solution is obtained to determine the nonlinear interlaminar stresses of a general cross-
ply composite laminated beam, which has piezoelectric layers.  

 
2. MATHEMATICAL FORMULATION 
It is intended here to determine the interlaminar stresses in a cross-ply laminated beam 
with dimensions l and h as its length and height, as shown in Figure 1. Some of the 
layers have piezoelectric properties and it is assumed that the electrodes for applying 
voltage are placed at the layer interfaces. The displacement field using a third-order 
shear deformation beam theory (TSDBT) may be represented as: 
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Figure 1: Geometry of the piezoelectric laminated beam. 
 
where u1, u2, and u3 are displacements in the x, y, and z directions, respectively, of a 
material point initially located at (x, y, z) in the undeformed beam. As the beam is 
formed of cross-ply layers, no displacement in y direction will occur. Substituting 
Equations (1) into the von-Kàrmàn nonlinear strain-displacement relations, the following 
results will be obtained [9]: 
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A prime in these equations indicates an ordinary derivative with respect to x. Using the 
principle of minimum total potential energy, equilibrium equations can be obtained in 



terms of stress resultants as [9]: 
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The stress resultants in Equations (3) are defined as: 
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Three types of boundary conditions can be defined at the ends of the beam, given in 
Table 1.  
 
Table 1: Types of boundary conditions at the ends of the beam 

Type Symbol Conditions 
S1 0x x x x xN M L P w R= = = = = =  Simple 

support S2 0 0x x x xu M L P w R= = = = = =  
Clamped C 0 0x x x zu wψ ϕ η ψ= = = = = =  
Free F 0x x x x x xN M L P Q R= = = = = =  

 

3. GVERNING EQUATIONS OF EQUILIBRIUM 
Because the width of the beam is small comparing to its length, it is assumed that                 
σy = σyz = 0 [10], so the reduced piezo-elastic constitutive law of the kth orthotropic 
piezoelectric lamina with fiber orientations of 0º or 90º only is utilized as [11]: 
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where { }σ  and { }ε  are the stress and strain vectors, ( )[ ] kC  and ( )[ ] ke  are the off-axis 
reduced mechanical stiffness and piezoelectric coupling matrices, given in Appendix, 
and  ( ){ } kE  is the electric field vector, whose components are defined as: 
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with ( ) ( , , )k
e x y zφ  being the scalar function of electric potential through the kth layer. It 

should be noted that electric voltage is applied to piezoelectric layers through the 
thickness. It is assumed that the electric potential ( )k

eφ  varies linearly in the z-direction 
through each layer [12-13], so ( ) ( , , )k

e x y zφ  reduces to: 
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where 
1, ke zφ
+

is the electric voltage applied at the upper interface and tk is the thickness of 
the kth layer (see Figure 1). By this assumption, only the component Ez of the electric 
field exists which is a constant for each layer.  
It is convenient to introduce a new unknown function which will let us to handle the 
nonlinear terms. This function is defined as: 

0 2
1 0( ) ( ) ( ) / 2u x x u wε′ ′ ′= = +  (8)

Upon substitution of Equations (2) and (8) into Equation (5) and the subsequent results 
into Equations (4), the generalized stress resultants are obtained, which can be 
represented as follows: 
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The rigidity terms in Equations (9) are given by: 
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Note that the integration of the electric terms in Equation (5) with respect to z are some 
constants, indicated by superscript P in Equations (9), defined as: 
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To obtain the governing equations of equilibrium, first note that from the first equation 
of (3), we have: 

0
x xN N=  (12)

where 0
xN  is a constant to be found from boundary conditions. Substituting Equation (9) 

into (3) yields the governing equations of equilibrium, which is a set of ordinary 
differential equations whose characteristic equation has repeated zero roots. In order to 
enhance the solution scheme of these equations, some small artificial terms will be 
added to these equations so that the characteristic roots become all distinct [14-15]. 
Therefore, these equations are rewritten as follows: 
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with α1 and α2 being prescribed numbers which are relatively small compared to the 
numerical values of stiffnesses Aij, Bij, etc. This way the solution of the Equations (13) 
will extremely be insensitive to the small number chosen for the parameters α1 and α2. 
The solution of Equations (13) may be found by using state-space approach [16] as (see 
Appendix): 
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Here, [T] and λi's (i = 1, 2, ... , 12) are, respectively, the matrix of eigenvectors and 
eigenvalues of the coefficient matrix of Equations (13) given in Appendix, which may 
have complex values. Also Ki's are twelve arbitrary unknown constants of integration to 
be found by imposing the boundary conditions at the ends of the beam. 
It can be shown that if one of the boundary conditions at each end of the beam was 
Nx = 0, the nonlinear analysis would lead to same results as the linear one. So, only S2 
and C type conditions are taken into consideration (see Table 1), for which u0 = 0. Since 
the function u0(x) does not appear implicitly in Equations (14), this boundary condition 
can not be imposed directly. Instead, the condition given in Equation (12) at the both 
ends of the beam is used to find the unknown constants Ki's. 
 
4. NUMERICAL RESULTS 
A try and error procedure should be utilized, to obtain the solutions given in Equations 
(14). To this end, a numerical value is assigned to 0

xN .  Then, Equation (8) is integrated 
with respect to x from 0 to l to get: 
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This condition is used to modify the numerical value of  0
xN . 

Equation (5) is used to find the in-plane stress xσ . For interlaminar stresses zσ  and xzσ  

local equilibrium equations are integrated to improve the accuracy [14-15]. Since the 
nonlinear strain-displacement relations are considered, local equilibrium equations 
should be stated in terms of Piola-Kirchoff stress tensor, which may take the following 
form for the beam: 
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To test the reliability of the analysis, the methodology outlined previously is applied to a 
laminated beam, which is subjected to the S2-type of simply supported boundary 
conditions at x = 0,l. This case of simply supported beam is compared against 
corresponding numerical results based on a first-order shear deformation beam theory 
(FSDBT). The laminated beam with ply configuration [0°/90°]s is assumed to have the 
thickness h and length l and each of the material layers are of equal thickness tk = t = h/4 
(see Figure 1). The employed material is supposed to be idealized as a homogeneous 
piezoelectric orthotropic composite material with the mechanical properties of a typical 
high-modulus graphite/epoxy lamina [2] and electrical properties of PZT-5A [5] as 
follows: 
E1 = 137.9 GPa, E2 = E3 = 14.48 GPa,   G12 = G13 = G23 = 5.86 GPa, 
υ12 = υ13 = υ23 = 0.21, 

 



e31 = e32 = –5.4 C/m2,   e33 = 15.8 C/m2,   e24 = e15 = 12.3 C/m2, (17)
where the subscripts 1, 2, and 3 indicate the principal material coordinates. The voltage 
Va = 200 kV is applied to the upper layer of the beam. The beam geometry is mainly 
determined by l = 10h and h=0.01 m. 
Figure 2 shows the deflection of the beam in terms of its length. Also Figure 3 illustrates 
the distribution of in-plane stress xσ  through the thickness of the beam at x = l/2. 
Obviously, good agreement between third-order and first-order theories is found. 
After the reliability of the method has successfully been tested, let's check the necessity 
of the nonlinear analysis. Maximum deflection of the same beam in terms of the applied 
voltage Va is shown in Figure 4 for both linear and nonlinear analysis. As it is expected, 
as the magnitude of the applied voltage increased, the difference between linear and 
nonlinear analysis becomes considerable. This means that at high voltages, one should 
use the nonlinear analysis. 
  

 
Figure 2: Deflection of a S2S2 [0°/90°]s beam. 
 

 
Figure 3: Distribution of in-plane stress xσ  through the thickness of the S2S2 [0°/90°]s 
beam at x = l/2. 
 
Next, the behavior of interlaminar stresses of the same laminated beam is presented. 
Figure 5 shows the distributions of zσ  and xzσ  along the middle plane and 0°/90° 
interfaces of [0°/90°]s beam. The singular behavior of the interlaminar stresses is clearly 
observed in this figure. 



 
Figure 4: Maximum deflection of the S2S2 [0°/90°]s beam in terms of the applied 
voltage to the upper surface of the beam. 
 

    
              (a)                                                                 (b) 
Figure 5: Distributions of (a) interlaminar normal stress zσ and (b) interlaminar shear 
stress xzσ  through the length of the S2S2 [0°/90°]s beam. 
 
Figure 6 shows the distributions of interlaminar normal and shear stresses at all three 
layer interfaces of the asymmetric [0°/90°]2 beam through the length. The boundary 
condition for this lay-up is S2-type at the both ends and the voltage Va = 200 kV is 
applied to the upper surface. 
The last example is presented to investigate the effect of beam's aspect ratio l/h on 
interlaminar stresses. To be able to compare different beams, the interlaminar stresses 
are nondimensionalized as: 

31

( , ) ( , )z xz z xz
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l
e V
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where Va is the voltage applied to the upper surface of the beam. Figure 7 shows the 
distributions of zσ and xzσ  through the middle plane of S2S2 supported [90°/0°]s beams 
with different aspect ratios. It is seen as the thickness of the beam decreases, the 
magnitude of both interlaminar normal and shear stresses increase and their behavior 
becomes more singular. 



    
             (a)                                                                 (b) 
Figure 6: Distributions of (a) interlaminar normal stress zσ  and (b) interlaminar shear 
stress xzσ  through the length of a S2S2 [0°/90°]2 beam. 
 

    
           (a)                                                                 (b) 
Figure 7: Distributions of (a) interlaminar normal stress zσ  and (b) interlaminar shear 
stress xzσ  through the middle plane of the S2S2 [90°/0°]s beam for different aspect 
ratios. 
 
5. CONCLUSIONS 
An analytical solution has been performed to investigate the interlaminar stresses in 
general cross-ply composite laminated beams with piezoelectric layers. Equilibrium 
equations have been obtained within the framework of a third-order shear deformation 
beam theory. The solution can be used for different boundary conditions at the ends of 
the beams subjected to electrical loading. Also it is assumed that the electric potential 
varies linearly through the thickness of each layer. The singular behavior of the 
interlaminar stresses in the boundary-layer region for both symmetric and asymmetric 
lay-ups is obviously seen in the numerical results. 
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APPENDIX 
The general constitutive relation for the kth orthotropic piezoelectric material is given 
by: 
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For beams, as it is mentioned, this relation is reduced to Equation (5) where the off-axis 
reduced mechanical stiffness and piezoelectric coupling matrices are defined as: 
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In order to solve Equations (13), the state-space variables are assumed as: 
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Substitution of these variables into Equations (13) results in a system of twelve coupled 
first-order ordinary differential equations, which may be presented as { } [ ]{ }Aξ ξ′ =  
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and [R] is a 12×12 matrix whose nonzero elements are: 
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5,6 6,3 55 6,5 55 6,7 55

6,10 55 7,8 8,3 55 8,5 55

8,7 55 8,10 55 9,10 10,4 55

10,6 55

1, , , 1,
, 2 , 3 , ,

1, 2 , 4 , 6 ,
2 , 1, 3 , 6 ,

9 , 3 , 1, ,
2 ,

R R R A R
R A R B R D R A
R R B R D R E
R B R R D R E
R F R D R R A
R B

α= = − = − =
= = = =
= = = =
= = = =
= = = = −
= − 10,8 55 10,9 2 11,12

12,2 13 12,11 33

3 , , 1,
, ,

R D R R
R A R A

α= − = − =
= =

 

4,12 55 13 6,12 55 13 8,12 55 13

12,4 13 55 12,6 13 55 12,8 13 55

, 2 , 3 ,
, 2 , 3 .

R B B R D D R E E
R B B R D D R E E

= − = − = −
= − = − = −

 

Finally, [T] and λi's (i = 1, 2, ..., 12) appearing in Equations (14) are, respectively, the 
matrix of eigenvectors and eigenvalues of the coefficient matrix [A]. 


