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Abstract

In this paper, the application of distributed-lumped (hybrid) modeling technique (DLMT) in modeling of the forced torsional vibration of systems is investigated. To illustrate the simplicity and efficiency of the method, an industrial example of rotating shaft with a lumped element subjected to various torques is analyzed. Natural frequencies obtained by this method are compared with those obtained by using finite element and Holzer's method. In addition, time responses of the system subjected to three different types of torsional forces are computed by this method.
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Introduction

The question of vibration model of industrial systems, especially rotating shafts, is the basic consideration in engineering design of dynamic systems. Not only the avoidance from natural frequencies of such systems have been observed since long before, but the condition monitoring (CM) of highly sensitive and precious plants such as turbines and jet rotors are applied widely using accurate vibration model of systems. Condition Monitoring for rotating machinery incorporates a wide range of techniques, such as oil analysis, wear-debris analysis, ultrasonic, corrosion, and vibration analysis. Vibration condition monitoring is, arguably, the oldest type of machinery condition monitoring. Measured vibration signals can reveal important and detailed information about possible fault which may exist in a machine [1]. Fault identification in rotating machinery using vibration analysis is a constantly expanding field. Developments are continually made with the use of new analysis methods, increased computing power, measurement techniques, and so on.

Among different methods of modeling systems such as lumped-lumped modeling technique (LLMT) and distributed-lumped modeling technique (DLMT), or numerical and approximate methods such as transfer matrix method (TMM) and finite element method (FEM), it is clear that the model combined with both the distributed and lumped elements, is the best representative of complex and accurate systems [2].

Many industrial systems can be modeled as a rotating shaft with disks on it, such as gear systems, propellers, pumps, turbines, compressors, jet engines, etc. In such systems, the disk, which is the representative of blade, gear, etc., is impressed by different loads, which affect the vibration of system and lead to different frequency and time responses. Comparison between safe and defected system responses brings us an effective and advantageous method to the condition monitoring of expensive and important systems such as jet engines.

In this study, for a simple example, the torsional vibration of a general three stage distributed-lumped-distributed system is considered. The system is modeled by distributed-lumped technique, and the natural frequencies are investigated for two sets of boundary conditions (BCs): clamped-free and clamped-clamped shaft, which are more common in real systems. To check the correctness and accuracy of the present method, the natural frequencies and mode shapes of an industrial example of the system achieved from this method are compared with those obtained by utilizing the commercial finite element package of ANSYS, revision 9 and also Holzer's method. The frequency responses are computed in response to the limited step, limited ramp, and delta force functions, using hybrid model of the system for clamped-free shaft. Time responses are also calculated employing both the inverse Fourier transform (IFT) and convolution integral together.

The General Distributed-Lumped Model

Generally speaking, hybrid modeling technique deals with systems by dividing them into two element types.

1) The distributed element, which is the main part of shafts, rotors or any other continuous part of the systems with distributed mass or inertia.

2) The lumped element which is the supplementary part of shafts, rotors, etc. with concentrated mass or inertia such as disks, gears, propellers, blades, and so on.

In this way, a system is considered as a combined set of distributed and lumped elements, in which the vibration of final model is obtained by setting the distributed and lumped matrices of different parts and combining them together (see Figure 1). Distributed and lumped matrices are formed according to the analytical equations of motion, so this is an exact method in contrast with other approximate methods such as transfer matrix method, finite element method, and so on. Another advantage of this method compared with analytical method is that the continuity conditions between distributed and lumped elements are identically satisfied, and it remains only to satisfy the boundary conditions of the system. To this end, there is no difficulty in using this approach for analyzing systems with mixed series of distributed and lumped elements as it is shown by Bartlett et al. [3]. 
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Figure 1 - General series representation of a distributed lumped parameter system (Hybrid Model)

Deriving Transfer Matrix for the Distributed Element

The equations of motion for torsional vibration of a rod with the density 
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, the shear modulus of elasticity G and the polar moment of inertia J can be expressed by the following equations (e.g., see [4,5]):
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where 
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and T(x,t) are the torsional angle and torque functions, respectively; x is the distance along a section and t is time.

Differentiating equation (2) with respect to x and substituting for 
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Also differentiating equation (2) twice with respect to t results in:
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Moreover, differentiating equation (1) with respect to x gives:
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and substituting equation (4) into (5) results in:
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Equations (3) and (6) are the main equations of torsional vibration of the shaft. Assuming zero initial conditions, Laplace transformation of equations (6) and (3) gives:
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where s is the Laplace transform variable. Equations (7) can be written in the compact form as follows:
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in which, k is the main function as:
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and
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The general solution of equation (8) is given by:
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where
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Therefore, the solution for k can be rewritten as:
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Hence, the solution of equations (7) will be in the following form:
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The unknown constants of integration, A and D, are obtained by imposing the boundary conditions at x=0. That is,
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Next, it remains to find B and C in equations (14). Differentiating equations (14) with respect to x and substituting for 
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Upon substitution of x=0 in equations (16), the following results would be obtained:
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Hence, the solution of equations (7) for the jth element can be expressed in the matrix form as follows:
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where 
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According to Figure 2, for the jth element at x=0 there would be:
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Therefore, the main matrix for the distributed element representative of torsional vibration is as follows:
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Figure 2– General model of the rotating rotor system

Deriving Transfer Matrix for the Lumped Element

The equation of motion and continuity conditions in Laplace domain of the jth lumped element, which is exposed to the applied force f in the radius r are written as:
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where 
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is the mass polar moment of inertia for disk and r is the radius which the force is applied. Therefore, equation (22) can be expressed in the matrix form as:
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Illustrative Example

In this section, the methodology outlined previously is applied to a shaft with a disk on its middle (see Figure 2), which is a simplified model for useful and common industrial systems. The properties of the system considered here are shown in Table 1. As mentioned already, the present method can be used for analyzing systems with any number of distributed and lumped elements without any increasing in difficulty.
Table 1– Properties of the system

	Shaft Length 2l
	4 m

	Shaft Diameter 
[image: image32.wmf]shaft

d


	0.15 m

	Mass of Shaft per Unit Length m
	137.837 kg

	Density of Shaft Material ρ
	7800 kg/m3

	Modulus of Elasticity of Shaft E
	200 GPa

	Shear Modulus of Shaft G
	80 GPa

	Mass of Disk
	100 kg

	Radius of Disk
	1 m

	Mass Moment of Inertia for Disk
	50 kgm2

	Disk Thickness
	0.08 m


DLMT Solution

To represent the main hybrid model of the system, one should notice that the system is combined of two distributed and one lumped elements (Figure 3). For the distributed elements 1 and 3 the transfer matrices can be written according to equation (21) as follows:
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where
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Also the transfer matrix for the lumped element is:
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Figure 3– Hybrid model of the rotating rotor system
where
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Substituting equations (24) into (26) yields [6,7]:
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Equation (23) may be shown in the simple form as:
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where
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Equation (29) is the transfer matrix of the overall system relating torques and torsional angles of the left and right ends of the system.

The Laplace transform variable ‘s’, in general, is the representative of equation 
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For each sets of boundary conditions, one characteristic equation can be obtained that its solution will give the natural frequencies of the system. In the following, two numerical examples are presented for a rotating shaft with a lumped mass on it with two different boundary conditions (i.e., clamped-free and clamped-clamped) to check the accuracy of the present method.

Clamped-Free System

Assuming that the shaft is clamped at the position zero, and free at the position 3, the boundary conditions will be (see Figure 2):
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According to the above relations, equation (29) can be rearranged as follows:
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where 
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In this case, the natural frequencies are obtained by plotting 
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, for instance, as shown in Figure 4. In this view, the natural frequencies occur at the peaks of the spectrum. From equation (32), it is clear that the peaks are the result of denominator approaching zero. Since in all relations 
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Figure 4– Frequency spectrum for clamped-free BCs (
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Other than that, substituting the relations (31) in equation (29) and neglecting the term coincides with f (because the natural frequencies are independent of applied force) gives:
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The first equation is satisfied when 
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, which is another reason for computing the roots of 
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 to find the natural frequencies as well. The results for this case are listed in Table 2.

Table 2- Natural frequencies of clamped-free rotating system.
	Frequency (Hz)
	DLMT Method
	FEM Method
	Holzer's Method
	Error Percent

(FEM in respect to DLMT)
	Error Percent

(Holzer in respect to DLMT)

	1
	31.4
	31.7
	31.4
	0.37
	1.50

	2
	397.9
	410.0
	383.4
	3.06
	3.64

	3
	795.8
	816.6
	798.6
	2.60
	0.35

	4
	1193.7
	1224.0
	1134.8
	2.50
	4.93

	5
	1591.5
	1632.0
	1576.6
	2.54
	1.00

	6
	1989.4
	2040.0
	1862.1
	2.54
	6.40

	7
	2403.2
	2449.0
	2315.7
	1.91
	3.64

	8
	2875.2
	2859.0
	2548.8
	2.65
	8.48

	9
	3199.0
	3270.0
	2996.0
	2.22
	6.34


Clamped-Clamped System

In this case, the boundary conditions are expressed as:
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Hence, equation (29) can be rearranged as:
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where
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 are the outputs of system. The natural frequencies are obtained by plotting 
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, for instance, as shown in Figure 5. Similar to the discussion presented in the previous part, the roots of 
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 should be computed in this case. The results for this case are listed in Table 3.
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Figure 5– Frequency spectrum for clamped-clamped BCs (
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Table 3- Natural frequencies of clamped- clamped rotating system.
	Frequency (Hz)
	DLMT Method
	FEM Method
	Holzer's Method
	Error Percent

(FEM in respect to DLMT)
	Error Percent

(Holzer in respect to DLMT)

	1
	43.9
	45.2
	44.4
	2.81
	1.09

	2
	802.0
	815.3
	802.1
	1.72
	0.08

	3
	1602.0
	1631.0
	1582.0
	1.86
	1.28

	4
	2402.0
	2449.0
	2320.5
	1.96
	3.24

	5
	3203.0
	3269.0
	2998.5
	2.08
	6.37

	6
	4003.5
	4093.0
	
	2.24
	

	7
	4804.0
	4921.0
	
	2.44
	


FEM Solution

To contrast and confirm the results with another method, the finite element method is used to investigate the natural frequencies. The system is modeled by ANSYS (9) software, and meshed using brick 45 (8 nodes 3D) elements. Block Lanczos solver of ANSYS is used in the analysis,and each distributed part is divided into 100 elements. The natural frequencies are listed in Tables 2 and 3. The first two mode shapes for clamped-free and clamped-clamped boundary conditions are shown in Figures 6-9.

Holzer's Method

In order to verify the results of the two techniques, Holzer's method is also applied to obtain the natural frequencies of the mentioned system. 
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Figure 6– 1st mode shape for clamped-free BCs
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Figure 7– 2nd mode shape for clamped-free BCs

The employed equations are discussed extensively in [4]. Each distributed part (shaft) is divided into 10 stations (rigid disk elements) and 10 fields (massless shaft elements) and the frequency equation is solved by using MATLAB software. The results are listed in Tables 1 and 2 for the clamped-free and clamped-clamped boundary conditions, respectively. 

Frequency and Time Responses

Since the rotor systems are usually subjected to different external torques, the effect of three important types of torques on a clamped-free shaft is investigated. 

To acquire the frequency response, three types of applied torques (limited step, limited ramp and impulse functions) in Laplace form are substituted into equation (32). These three types of torques are shown in Figures 10-12. The frequency responses for 
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 show that these parameters tend to infinity at the natural frequencies. Also the disk displacement can be obtained through equation (26). However, for the sake of brevity, theses parameters are not presented here.

To compute the time response, both the inverse Fourier transform and convolution integral are used together. Firstly, the inverse Fourier transform (IFT) which is expressed as [8]:
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is used to find the time response of the system to the unit impulse torque (without delay). 
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Figure 8–1st mode shape for clamped-clamped BCs
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Figure 9–2nd mode shape for clamped-clamped BCs

In equation (36), 
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 or 
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 which are obtained from equations (32) or (26). Since the referred functions are complex, the integral relation can be expressed numerically as:


[image: image84.wmf][

]

w

w

w

w

w

p

D

-

=

å

=

k

r

r

r

r

r

t

B

t

A

t

x

1

)

sin(

)

(

)

cos(

)

(

1

)

(


(37)

where
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In equations (38), 
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 are the real and imaginary parts of the function 
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Secondly, the convolution integral, which is expressed in the following form:
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is used to compute time response of the system to the torques mentioned before. In equation (39), 
[image: image90.wmf])

(

x

f

 is the torque defined in the matrix form, and the whole relation can be computed numerically (for example, by using function ‘conv’ in MATLAB software [9]).

Figures 13-15 show the dynamic responses of 
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, 
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, and 
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, respectively. It can be seen that the first part of spectrum has zero quantity (no force is applied). The second part shows vibration, where the amplitude is two times greater in response to limited step comparing with limited ramp, as it is expected. The third part shows vibration after finishing the torque, and its altitude is related to the situation that torque comes to the end.
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Figure 10- Delta force function
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Figure 11- Step force function
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Figure 12– Ramp-step force function
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Figure 13- Time response of disk vibration under delta force function
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Figure 14– Time response of free point vibration of shaft under step force function
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Figure 15–Time response of torque at the clamped point of shaft under ramp-step force function

Conclusions

This paper shows how the DLMT can be used to analyze torsional vibration of a complex rotating system for investigating natural frequencies, time, and frequency responses.

The frequencies computed by DLMT are compared with those obtained by finite element and Holzer's methods, in the case of clamped-clamped and clamped-free boundary conditions. As it is shown in Tables 2 and 3, the three methods are differed less than 9 percent which confirms the DLMT results. Since the analytical equations of motion are solved exactly by the distributed-lumped technique, the achieved results are of high accuracy.

It is also shown that DLMT can also be used to compute the frequency and time responses to different forces and torques, which can be used for condition monitoring of vibrating systems. The DLMT can be used for other kinds of vibration, for instance, longitudinal and transverse vibrations. It is shown that while the new method brings highly accurate results, its simplicity and accuracy brings proper application on industrial systems. The present method is straightforward and general, and can readily be used in developing a more advanced theory such as transverse vibration of Timoshenko beams. 
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