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Abstract. This article presents the analysis of functionally graded hollow cylinders with finite 
length under axisymmetric dynamic loads. It is assumed that the functionally graded cylinder 
is comprised of metal-phase and ceramic-phase and material properties are graded in the 
thickness direction of the cylinder according to a power law distribution. The axisymmetric 
governing equations of motion are derived. To solve them, two dimensional finite element and 
Newmark’s methods are used. By this method, loading in longitudinal and radial directions 
can be applied as an arbitrary function of time and coordinates. In a simple case, an internal 
pressure which increases exponentially from zero to a final value is applied. Radial displace-
ment for long time is obtained and compared to analytical result of an isotropic thick hollow 
cylinder under uniform internal pressure. In another case, internal pressure is applied as a 
triangular pulse and dynamic response is investigated. By using the fast Fourier transform 
(FFT), the time response is transferred to frequency domain and natural frequencies are illus-
trated. As another axisymmetric load, a radial line load which is uniformly distributed along 
circumferential direction is considered and longitudinal wave propagation through the length 
of the cylinder is illustrated. Also the mean velocities of wave propagation are obtained. Nu-
merical results for thick cylinders and cylindrical shells are obtained and compared with the 
results for isotropic cylinders. 
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1 INTRODUCTION 
A functionally graded material (FGM) is usually a combination of two material phases that 

has a gradual transition from one material at one surface to another one at the opposite surface. 
This transition allows the creation of multiple properties (or functions) without any mechani-
cally weak junction or interface. Furthermore, the gradual change of properties can be tailored 
to different applications and service environments. It is possible with these materials to obtain 
a combination of properties that cannot be achieved in conventional monolithic materials. For 
example, thermal protection plate structures made of a two phase ceramic/metal functionally 
graded (FG) composite provide heat and corrosion resistance on the ceramic-rich surface 
while maintaining the structural strength and stiffness by the metal-rich surface. Moreover, 
FGMs allow for spatial optimization by grading the volume fractions of two or more constitu-
ents to improve the response of structures. If properly designed, FGMs can offer various ad-
vantages such as reduction of thermal stresses, minimization of stress concentration or 
intensity factors and attenuation of stress waves. Hence, FGMs have gained potential applica-
tions in a wide variety of engineering components or systems including the rocking motor 
casing, armor plating, heat-engine components, packaging encapsulates, thermoelectric gen-
erators, and human implants, just to name a few. 

There are some works done in response of functionally graded cylinders under dynamic 
thermal and mechanical loads. Gong et al. [1] used Reddy’s third order shear deformation 
theory (without incorporating transverse normal deformation) to present an analytical solution 
to predict the transient response of simply supported FGM cylindrical shells subjected to low-
velocity impact by a solid striker. A solution for guided waves in graded cylinders making use 
of Nelson’s numerical–analytical method [2] was first introduced in 2002 by Han et al. [3]. 
Then, they [4] have presented a numerical method for analyzing transient waves in FGM cyl-
inders. In their method, the FGM shell is divided into layer elements with three nodal lines 
along the wall thickness. The material property within each element is assumed to vary line-
arly in the thickness direction. Also, Han et al. [5] employed Fourier transformation and mo-
dal analysis to propose a numerical method for analyzing transient waves in cylindrical shells 
of an FGM excited by impact point loads. Loy et al. [6] and Pradhan et al. [7] have investi-
gated the vibration behavior of functionally graded cylindrical shells based on Love’s theory 
and the Rayleigh–Ritz method. Their studies revealed that the frequency characteristics of 
functionally graded cylindrical shells are similar to those of isotropic shells. Yang and Shen 
[8] used Reddy’s higher-order shear deformation shell theory to investigate free vibration and 
dynamic instability of functionally graded cylindrical panels subjected to thermo-mechanical 
loads consisting of a steady temperature change, static and periodically pulsating forces in 
axial direction. Also, Yang and Shen [9] developed a semi-analytical approach for dynamic 
buckling of an FGM cylindrical panel loaded by a combination of static and periodic axial 
forces and under a uniform temperature change. Sofiyev [10] studied the stability of cylindri-
cal shells composed of functionally gradient material subjected to axial compressive load 
varying as a power function of time. Also, Sofiyev [11, 12] studied stability of functionally 
graded cylindrical and conical shells, respectively under a periodic time dependent external 
pressure. Elmaimouni et al. [13] made use of Legendre polynomials and harmonic functions 
to develop a numerical method for calculating guided wave propagation in an FGM infinite 
cylinder. Kadoli and Ganesan [14] presented linear (LN) thermal buckling and free vibration 
analysis for functionally graded cylindrical shells with clamped–clamped boundary condition 
based on temperature-dependent material properties. Shakeri et al. [15] have studied vibra-
tions and radial wave propagation in FGM thick hollow cylinders with considering the FGM 
cylinder is made of many isotropic sub cylinders. Parametric resonance of simply supported 
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FGM cylindrical shells under periodic axial loading was studied by Ng et al. [16]. A second 
order differential equation with periodic coefficients of the Mathieu-Hill type is derived. The 
Bolotin’s first approximation is used to evaluate the periodic solution. They report that the 
natural frequencies and dynamic instability regions can be fairly controlled by appropriately 
varying the power law exponent. Recently Ng et al. [17] developed an efficient finite element 
formulation based on the first order shear deformation theory for active control of FGM shells 
in the frequency domain. They also illustrated the application of their formulation for a canti-
lever FGM shell with piezoelectric sensor and actuator layers and subjected to a harmonic ex-
citation. Natural frequencies can be controlled to desired values by adjusting the displacement 
control gain or the volume fraction of the constituent materials. Vibration amplitudes can be 
controlled by increasing the damping via displacement velocity feedback gain. 

Fuchiyama and Noda [18] have developed a computer program to analyze the transient 
heat transfer and transient thermal stresses in FGM components by finite element method. 
Reddy and Chin [19] have developed a coupled as well as an uncoupled thermoelastic finite 
element formulation to analyze the thermomechanical behavior of functionally graded cylin-
ders and plates subjected to abrupt thermal loading. Awaji and Sivakumar [20] analyzed nu-
merically the steady-state and transient temperature distributions and related thermal stress 
distribution in the FGM cylinder composed of mullite-molybdenum system. Thermal stability 
of FGM circular cylindrical shells based on the Donnell stability equations are investigated by 
Eslami and Shahsiah [21]. Obata et al. [22] presented the solution for thermal stresses of a 
thick hollow cylinder made of FGM, under a two-dimensional transient temperature distribu-
tion. 

In mentioned studies, multi-layered method has been used widely, in which FGM cylinder 
is divided into layer elements and material properties in each element are approximated to be 
constant or increasing linearly. In this work, distribution of material properties in the thick-
ness direction is considered exactly according to a power low distribution. The governing 
equations of motion are solved by two dimensional finite element and Newmark’s methods. 
By this method, we can apply loads in longitudinal and radial directions as an arbitrary func-
tion of time and coordinates. 

2 THEORETICAL FORMULATION 

2.1 Material properties definition for functionally graded shells 

Here we consider an FGM cylinder, which is made of a mixture of ceramic and metal. The 
outer surface of the cylinder is metal-rich whereas the inner surface is ceramic-rich and mate-
rial properties are graded in the thickness direction of the cylinder according to a power law 
distribution which is: 

(1)  ( )
n

in
out in in

out in

r r
V V V V

r r
−

= − +
−

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

where inV  and outV  are material properties in the inner and outer surfaces of the cylinder and 
volume fraction exponent n represents the material variation profile through the cylinder 
thickness, which is always equal or greater than zero, and may be varied to obtain the opti-
mum distribution of the constituent materials. The value 0n =  represents a fully metal and 
infinity represents a fully ceramic cylinder. 



M. Tahani and T. Talebian  

 4

2.2 Equations of motion 
Consider a functionally graded cylinder with finite length subjected to axisymmetric loads. 

Since the geometry of the cylinder and the load are independent of circumferential direction, 
the problem is axisymmetric. The governing equations of motion for this case are: 

(2)  

2

2
rr rz r

r r z
u
t

θσ σσ σ
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Also, the strain-deflection relations in cylindrical coordinates are: 

(3)  

, ,r r z
r z

u u u
r r zθε ε ε∂ ∂

= = =
∂ ∂

  

, ,z r
r rz z

u u u u
r r r z

u
z

θ θ
θ

θ
θγ γ γ∂ ∂ ∂

= − = +
∂ ∂ ∂

∂=
∂

  

The linear constitutive relations are: 

(4)  
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where components of stiffness matrix are: 

(5)  
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Substituting Eqs. (3) into (4) gives stress deflection relations as follows: 
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(6) 

Also by substituting Eqs. (6) into (2), two coupled partial differential equations are obtained 
as: 
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which are known as Navier’s equations. 

3 FINITE ELEMENT SOLUTION  

3.1 Weak forms  
In order to solve the Navior equations in (7), first we obtain weak forms as: 
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(8) 

where 1w  and 2w  are weight functions and rt and zt are force tractions in boundary conditions 
as: 

r r r rz zt n nσ σ= +  

z z z rz rt n nσ σ= +  
(9)

3.2 Finite element modelling 
Here rectangular elements with two degrees of freedom in each node are used to model the 

two dimensional problem. The axisymmetric elements are considered in a cross-section of the 
cylinder, as shown in Figure 1. 

 

z

r 
 

Figure 1: Arrangement of elements in the cylinder. 
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Also, linear interpolation functions are selected as: 
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 (10)

Displacements are approximated as follows: 
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Weight function can also be replaced by interpolation functions. Therefore, weak forms are 
obtained as the following: 
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Eqs. (12) can be written in the matrix form as: 
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In Eqs. (14) integration is done over each element domain. To solve the problem in time do-
main, Newmark’s method is used.  

4 RESULTS AND DISCUSSION  
The functionally graded cylinder is assumed to be made of a combination of metal (Ti–

6Al–4V) and ceramic (ZrO2), with the material properties shown in Table 1. The cylinder is 
ceramic-rich in the inner and metal-rich at the outer surfaces, respectively. Boundary condi-
tions at two ends of the cylinder are considered free. 

Metal: Ti–6Al–4V Ceramic: ZrO2 
0.321ν =  0.333ν =  

66.2 (GPa)E =  117.0 (GPa)E =  
3 34.41 10 (kg/m )ρ = ×  3 35.6 10 (kg/m )ρ = ×  

Table 1: Material properties of Titanium and Zirconia 

To illustrate the results in thick cylinder and cylindrical shell, two ratios of inner radius to 
thickness are considered. These ratios are 1 for thick cylinder and 20 for cylindrical shell. For 
both type of cylinders, the ratio of length to inner radius is considered equal to 20. We con-
sider volume fraction coefficient 2n =  as a sample of functionally graded cylinder. 

4.1 Exponentially loading  
Consider the internal pressure loading function as: 

0
0( ) (1 )c tF t P e= −  (15)

where 0p and 0c  are constants and and assumed as 0p =1 MPa and 0c =100. For validation, 
Figure 2 shows the radial displacement along radial direction for long time in middle length 
of metal-rich thick cylinder. In this diagram the result of the above procedure is compared to 
the analytical result of an isotropic thick hollow cylinder under uniform internal pressure. A 
good agreement between these two results is observed.  
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Figure 2: Radial displacement along radial direction of metal-rich cylinder for long time. 
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For 0.1st∆ =  , ( )F t  approximately equals to final value. Radial displacement along radial 
direction at the middle length of functionally graded thick cylinder for different times in the 
interval t∆  is illustrated in Figure 3. Similar diagram for functionally graded cylindrical shell 
is shown in Figure 4. 
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Figure 3: Transient radial displacement for thick cylinder. 
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Figure 4: Transient radial displacement for cylindrical shell. 

Comparing Figure 3 and Figure 4 shows that variation of radial displacement along radial 
direction for thick cylinder is greater than cylindrical shell.  

4.2 Triangle pulse load 
Consider the internal pressure applied as a triangle pulse load: 

0 0

0

( ) for
( ) 0 for

F t p t t t
F t t t

= ≤
= >

 (16)

It is assumed that for thick cylinder 0p =20 MPa and 4
0 0.5 10 st −= ×  and for cylindrical shell 

0p =1 MPa and 0t =0.001s. Time history of radial displacement of functionally graded and 
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pure thick cylinders are compared in Figure 5. Similar diagram for cylindrical shell is shown 
in Figure 6. These results are obtained for a point in the middle length and the middle thick-
ness of cylinder.  
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Figure 5: Time history of radial displacement in thick cylinder which is excited by triangle pulse load. 
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Figure 6: Time history of radial displacement in cylindrical shell which is excited by triangle pulse load. 

From Figures 5 and 6 it is observed that the scope of the response due to the triangle pulse 
load for metal-rich cylinder is greater than ceramic-rich cylinder, because the module of elas-
ticity for metal is less than ceramic. Also, the response of functionally graded cylinder is 
placed between the responses of metal-rich and ceramic-rich cylinders. 

 Metal  FGM (n=2) Ceramic 
Thick cylinder 9045.2 10050.2 10101.0 

Cylindrical shell 6228.4 6920.4 7382.6 

Table 2: Natural frequencies of the cylinders. 
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By using the fast Fourier transform (FFT), the time response is transferred to frequency 
domain and natural frequencies are obtained as shown in Table 2. It is observed that the natu-
ral frequency for metal-rich cylinder is less than ceramic-rich cylinder and for thick cylinder 
is greater than cylindrical shell. Also, the natural frequency of functionally graded cylinder is 
between the natural frequencies of metal-rich and ceramic-rich cylinders. 

Time history of radial stress for functionally graded and pure thick cylinders is shown in 
Figure 7. Similar results for cylindrical shell is shown in Figure 8.  
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Figure 7: Time history of radial stress in thick cylinder which is excited by triangle pulse load. 
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Figure 8: Time history of radial stress in cylindrical shell which is excited by triangle pulse load. 

Also, time history of hoop stress for functionally graded and pure thick cylinders is shown 
in Figure 9. Similar results for cylindrical shell is shown in Figure 10. 

4.3 Longitudinal wave propagation 

Consider radial line load of 0 ( ) ( )q q z f tδ= which is uniformly distributed along circumfer-
ential direction, where 0q =1 kN, and δ  is Dirac delta function and ( )f t  is an incident wave-
let as: 
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( ) sin(2 / ) for / 4
( ) 0 for / 4

f t t t
f t t

π τ τ
τ

= ≤
= >

 (17)

It is assumed that for thick cylinder 52 10 sτ π −= ×  and for cylindrical shell 
516 10 sτ π −= × . The load is applied at one end of the cylinder and its effects on the middle 

length of cylinder are studied. Time history of radial displacement of functionally graded and 
pure thick cylinders is compared in Figure 11. Similar results for cylindrical shell is also 
shown in Figure 12. 
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Figure 9: Time history of hoop stress in thick cylinder which is excited by triangle pulse load. 
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Figure 10: Time history of hoop stress in cylindrical shell which is excited by triangle pulse load. 
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Figure 11: Time history of radial displacement in thick cylinder which is excited by incident wavelet. 
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Figure 12: Time history of radial displacement in cylindrical shell which is excited by incident wavelet. 
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Figure 13: Time history of radial stress in thick cylinder which is excited by incident wavelet. 
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From displacement figures, it is observed that the response of functionally graded cylinder 
due to the incident wavelet is placed between the responses of metal-rich and ceramic-rich 
cylinders. 
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Figure 14: Time history of radial stress in cylindrical shell which is excited by incident wavelet. 
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Figure 15: Time history of hoop stress in thick cylinder which is excited by incident wavelet. 

From time history of displacement diagrams, the mean velocities of longitudinal wave 
propagation are obtained and shown in Table 3. It is observed that the mean velocity of longi-
tudinal wave propagation for metal-rich cylinder is less than ceramic-rich cylinder and for cy-
lindrical shell is greater than thick cylinder. Also, the mean velocity of longitudinal wave 
propagation for functionally graded cylinder is between the mean velocities of longitudinal 
wave propagation for metal-rich and ceramic-rich cylinders. 

 Metal  FGM (n=2) Ceramic 
Thick cylinder 2222.2 2863.0 3218.4 

Cylindrical shell 3888.8 5045.0 5656.6 

Table 3: Mean velocities of longitudinal wave propagation. 
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Time history of radial stress for functionally graded and pure thick cylinders is shown in 
Figure 13. Similar results for cylindrical shell is shown in Figure 14. Also, time history of 
hoop stress for functionally graded and pure thick cylinders is shown in Figure 15. Similar 
results for cylindrical shell is shown in Figure 16. 
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Figure 16: Time history of hoop stress in cylindrical shell which is excited by incident wavelet. 

5 CONCLUSIONS 
Analysis of functionally graded hollow cylinders with finite length under axisymmetric 

dynamic loads is presented. Two dimensional finite element and Newmark’s methods are 
used to solve the governing equations of motion. Three types of dynamic loads are applied 
and the results are compared for thick and thin cylinders. Numerical results reveal that the 
scope of the displacement for metal-rich cylinder is greater than ceramic-rich cylinder while 
natural frequencies and wave velocity are less. These parameters for functionally graded cyl-
inder are between the results of metal-rich and ceramic-rich cylinders. 
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