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ABSTRACT
 

In this paper, analytical solutions of displacements and stresses in beams with integrated sensors and 
actuators are obtained based on a new and the existing first-order shear deformation beam theories. It is 
assumed that the beams are subjected to both mechanical and electrical loadings. The new theory is 
simple and straightforward and also free from the inversion of certain matrices which can be an 
inconvenience as far as developing more advanced laminated beam theories are concerned. The procedure is 
general and, therefore, can be used to develop higher-order and layerwise theories. For the assessment of the 
accuracy of this theory, analytical solutions are obtained and compared with those of existing first-order 
beam theory. It is found that the new beam theory can predict accurately displacements and stresses in the 
beams. 

 
 

1. INTRODUCTION 
 

The fiber-reinforced composite materials play an 
important role in modern industry for its high strength-
to-weight ratio. When piezoelectric materials, which 
can be used for both sensors and actuators, are bonded 
on the top/bottom surface or embedded in composite 
structures, their performance could be effectively 
enhanced. 

In the last two decades, the subject area of 
smart/intelligent materials and structures has 
experienced tremendous growth in terms of research 
and development. One reason for this activity is that it 
may be possible to create certain types of structures 
and systems capable of adapting to or correcting for 
changing operating conditions. 

Piezoelectric elements can be used as sensors or 
actuators in static applications such as torsion of 
helicopters blades, deflection of missiles fins, airfoil 
shape changes, or in dynamic applications such as 
structural vibration and acoustical generated noise. 
The design of such active systems requires accurate 
models of the electro-mechanical interaction between 
the structure and piezoelectric sensors or actuators. 

An analytical model of piezolaminated composite 
beams has been treated by Abramovich and Livshits 
[1] and Abramovich [2]. In the model, which is based 
on the linear piezoelectric theory and pin-force model, 
the piezoelectric elements are usually bonded to the 
top and bottom of the structure or are embedded in the 
composite beam as continues layers. Applied voltage 
to the actuators, may induce in-plane extension, 
bending or both in-plane and bending deflections. For 
symmetric laminates, applying the same in-phase 
voltage to both actuators will produce in-plane 
deformation, whereas equal out-of-phase voltage will 
produce pure bending. Both in-plane and bending 
deformations will be induced when different voltages 
are applied to each actuator or when a single actuator 
is bonded to the structure. 

Rammerstorfer [3] proved that it is possible to 
increase the first natural frequency and buckling load 
of plates by application of optimal fields of initial 
stresses. Almeida [4] suggested using of piezoelectric 
actuators for the stress stiffening effect of laminated 
composite beams and plates. Waisman and 
Abramovich [5] studied the stiffening effects of a 
smart piezolaminated composite beam. They solved 
numerically the three coupled equations of motion of a 



2 

general non-symmetric piezolaminated composite 
beam subjected to axial and lateral tractions and 
various boundary conditions to obtain the natural 
frequencies and mode shapes. 

Gaudenzi et al. [6] simulated the problem of the 
attenuation of the vibration effects in active cantilever 
beams by two strategies, position and velocity control 
with both numerical and experimental methods. Huang 
and Sun [7] modeled composite beams with bonded or 
embedded piezoelectric sensors and actuators to 
demonstrate the dynamic responses. Tong and Luo [8] 
and Luo and Tong [9] presented exact dynamic 
solutions to smart beams with a partially bonded 
piezoelectric patch. Based on the exact solutions, they 
obtained frequency spectra, natural frequencies, 
normal mode shapes, and harmonic responses of the 
shear and peel stresses for the PZT actuator. Vel et al. 
[10] obtained an analytical solution for the cylindrical 
bending vibrations of linear piezoelectric laminated 
plates by extending the Stroh formalism to the 
generalized plane strain vibrations of piezoelectric 
materials. 

Pan and Heyliger [11] derived analytical solutions 
for the cylindrical bending of multilayered, linear, and 
anisotropic magneto-electroelastic plates under simple-
supported edge conditions. Aldraihem and Khdeir [12] 
presented exact analytical solutions for deflection of 
beams with n actuators of shear piezoelectric.  

As far as the development of a laminated beam 
theory is concerned, two different approaches are 
adopted in the literature. In the first approach the 
lateral (the y-direction) displacement of the beam is 
simply neglected. This way, the couplings between in-
plane shearing and stretching and between bending 
and twisting are ignored. Such a theory is often used 
for isotropic beams and cross-ply laminated beams. In 
fact, this theory is for the cylindrical bending of 
laminated plates and not for the bending of laminated 
beams [13]. In the second approach a laminated beam 
theory is developed from an existing laminated plate 
theory. To this end, the stress (force) and moment 
resultants of the beam theory are obtained by ignoring 
certain stress and moment resultants in the constitutive 
law of the laminated plates. This way the characteristic 
couplings, mentioned earlier, are not lost in the beam 
theory. The process, however, demands the inversion of 
certain matrices which can be an inconvenience as far as 
developing more advanced laminated beam theories are 
concerned. 

It is the intention of the present work to develop a 
new first-order shear deformation laminated beam 
theory to overcome the shortcomings present in the 
two approaches discussed above. That is, the 
displacement field will be modified so that the 
constitutive law of a laminated beam can be obtained 

in a straightforward manner as in most laminated plate 
and shell theories. The resulting equilibrium equations 
will be valid for generally laminated beams.  
 
 
2. THEORETICAL FORMULATIONS 

 
In what follows two first-order shear deformation 

laminated beam theories for the analysis of laminated 
beams with piezoelectric layers subjected to 
mechanical and/or electrical loadings will be derived. 
First, a first-order shear deformation laminated plate 
theory (FSDPT) will be used to derive first-order shear 
deformation beam theory 1 (FSDBT1). Next, a new 
first-order shear deformation beam theory (FSDBT2) 
will be developed.  
 
2.1. FSDBT1 

Consider a rectangular (L×b) laminated composite 
plate of total thickness h with N layers (see Fig. 1). In 
the first-order shear deformation plate theory it is 
assumed that: 

1 0( , , ) ( , ) ( , )xu x y z u x y z x yψ= +  

2 0( , , ) ( , ) ( , )yu x y z v x y z x yψ= +  

3 ( , , ) ( , )u x y z w x y=  

(1) 

where u0, v0, and w denote the displacements of a point 
on the middle plane of the plate (z=0). Also xψ  and 

yψ  are unknown functions which denote rotations of 
a cross-section about y and x axes, respectively. Upon 
substitution of Eqs. (1) into the linear strain-
displacement relations of elasticity, the following results 
will be obtained: 

0 0,    ,    0x x x y y y zz zε ε κ ε ε κ ε= + = + =  
0 0 0, ,yz yz xz xz xy xy xyzγ γ γ γ γ γ κ= = = +  

(2) 

where 

0 00 0,   ,   ,   yx
x x y y

u v
x x y y

ψψ
ε κ ε κ

∂∂ ∂ ∂
= = = =
∂ ∂ ∂ ∂

 

0 0,    yz y xz x
w w
y x

γ ψ γ ψ∂ ∂
= + = +

∂ ∂
 

0 0 0
xy

u v
y x

γ
∂ ∂

= +
∂ ∂

,   yx
xy y x

ψψ
κ

∂∂
= +

∂ ∂
 

(3) 

Using the principle of minimum total potential 
energy the equilibrium equations can be shown to be: 

0 : 0xyx NNu
x y

δ
∂∂

+ =
∂ ∂
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0 : 0y xyN N
v

y x
δ

∂ ∂
+ =

∂ ∂
 

: 0xyx
x x

MM Q
x y

δψ
∂∂

+ − =
∂ ∂

 

: 0xy y
y y

M M
Q

x y
δψ

∂ ∂
+ − =

∂ ∂
 

 

: ( , ) 0yx QQ
w q x y

x y
δ

∂∂
+ + =

∂ ∂
 (4) 

where q(x,y) is the transverse load that is applied on 
the top surface (z=-h/2) of the laminate. Also the   
boundary conditions consist of specifying the 
following quantities at the edges of the plate: 
at x=0, L; 

Geometric (Essential) Force (Natural)  
0u  xN   

0v  xyN   

w  xQ  (5a) 

xψ  xM   

yψ  xyM   

and at 2y b= ± ; 

Geometric (Essential) Force (Natural)  

0u  xyN   

0v  yN   

w  yQ  (5b) 

xψ  xyM   

yψ  yM   

 

y

xz

b

h

L

q(x,y)

 
 

Figure 1. Geometry of piezoelectric laminated 
composite plate 

 
 

In Eq. (4) the force and moment resultants are 
defined as: 

( ) ( )/ 2

/ 2
, , , ,

h

x y xy x y xyh
N N N dzσ σ σ

−
= ∫  

( ) ( )/ 2

/ 2
, , , ,

h

x y xy x y xyh
M M M zdzσ σ σ

−
= ∫  

( ) ( )/ 2

/ 2
, ,

h

x y xz yzh
Q Q dzσ σ

−
= ∫  

(6) 

The linear constitutive relations for the kth 
orthotropic (piezoelectric) lamina in the laminate 
coordinates (x,y,z) are given as: 

( )( ) ( )

11 12 16

12 22 26

16 26 66

( ) ( )
31

32

36

0 0
0 0
0 0

kk k

x x

y y

xy xy

k k
x

y

z

Q Q Q
Q Q Q
Q Q Q

e E
e E
e E

σ ε
σ ε
σ γ

⎡ ⎤⎧ ⎫ ⎧ ⎫
⎢ ⎥⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎩ ⎭⎣ ⎦

⎡ ⎤ ⎧ ⎫
⎪ ⎪⎢ ⎥− ⎨ ⎬⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦ ⎩ ⎭

 (7a) 

( )( ) ( )
44 45

45 55

( )
( )

14 24

15 25

0
0

kk k
yz yz

xz xz

k
k x

y

z

C C
C C

E
e e

E
e e

E

σ γ
σ γ

⎡ ⎤⎧ ⎫ ⎧ ⎫
=⎨ ⎬ ⎨ ⎬⎢ ⎥

⎩ ⎭ ⎩ ⎭⎣ ⎦

⎧ ⎫
⎡ ⎤ ⎪ ⎪+ ⎨ ⎬⎢ ⎥
⎣ ⎦ ⎪ ⎪

⎩ ⎭

 (7b) 

where ( )k
ijQ  are the transformed reduced plane-stress 

stiffnesses, ( )k
ijC  are the transformed stiffnesses, ( )k

ije  
are the transformed piezoelectric moduli of the kth 
lamina, and ( ( )k

xE , ( )k
yE , ( )k

zE ) are the components of 

electic field (for more complete descriptions of these 
terms see [14]). For layers other than piezoelectric 
layers, the part containing the piezoelectric moduli 

( )k
ije  should be omitted. The piezoelectric stiffnesses 
( )k

ije  are known in terms of the dielectric constants and 
elastic stiffnesses as: 

( )( )
31 31

32 32

36 36

( )

11 12 16

12 22 26

16 26 66

0 0 0 0
0 0 0 0
0 0 0 0

                          .

kk

k

e d
e d
e d

Q Q Q
Q Q Q
Q Q Q

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (8) 
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Upon substitution of Eqs. (2) into Eqs. (7a) and 
(7b) and the subsequent results into Eqs. (6), the stress 
resultants are obtained which can be presented as 
follows: 

0[ ] [ ] {{
[ ] [ ] { } {

{ } }}
{ } }

P

P

A B N
C D M

N
M

ε
κ

= −
⎧ ⎫⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪

⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭
 (9a) 

0
44 452

0
45 55

P
y yz y

P
x xz x

Q A A Q
k

Q A A Q
γ
γ
⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (9b) 

where k2(=5/6) is the shear correction factor, {N} is the 
membrane force vector of the mid-plane, {M} is the 
bending moment vector and {NP} and {MP} are the 
membrane force and bending moment vectors caused 
by the electric field, respectively. That is, 

{ } [ , , ]T
x y xyN N N N=  

{ } [ , , ]T
x y xyM M M M=  

{ } [ , , ]p P P P T
x y xyN N N N=  

{ } [ , , ]P P P P T
x y xyM M M M=  

(10) 

with 

1

/ 2

31 32 36/ 2

( ) ( ) ( ) ( )
31 32 36

1

( , , ) ( , , )

( , , )k

k

hP P P
x y xy zh

Na z k k k k
zz

k

N N N e e e E dz

e e e E dz+

−

=

=

=

∫

∑∫
 

1

/ 2

31 32 36/ 2

( ) ( ) ( ) ( )
31 32 36

1

( , , ) ( , , )

( , , )k

k

hP P P
x y xy zh

Na z k k k k
zz

k

M M M e e e E zdz

e e e E zdz+

−

=

=

=

∫

∑∫
 

1

( )
( )

14 24

1 15 25

0
0

k

k

k
k xP Na zy

yP z
kx

z

E
e eQ

E dz
e eQ

E

+

=

⎧ ⎫
⎧ ⎫ ⎡ ⎤⎪ ⎪ ⎪ ⎪=⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎣ ⎦⎩ ⎭ ⎪ ⎪

⎩ ⎭

∑∫  

(11) 

where Na is the number of actuating layers. In Eq. (9a) 
the matrices [A], [B], and [D] are defined as: 

11 12 16

12 22 26

16 26 66

[ ]
A A A

A A A A
A A A

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

11 12 16

12 22 26

16 26 66

[ ]
B B B

B B B B
B B B

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

11 12 16

12 22 26

16 26 66

[ ]
D D D

D D D D
D D D

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

(12) 

where 

( ) 1 ( ) 2

1
, , (1, , )k

k

N z k
ij ij ij ijz

k
A B D Q z z dz+

=

=∑∫  

                                          , 1,2,6i j =      

1 ( )

1

k

k

N z k
ij ijz

k
A C dz+

=

= ∑∫    , 4,5i j =  

(13) 

Here, plate equations of motion are adapted to 
obtain beam equations of motion. It is more reasonable 
for a beam to let Ny and My be equal to zero. If these 
assumptions invoked to Eq. (9a), yields: 

0
11 16 11 16

0
16 66 16 66

11 16 11 16

16 66 16 66

P
x x x

P
xy xy xy

P
x x x

P
xy xy xy

N NA A B B
N NA A B B
M MB B D D
M MB B D D

ε
γ
κ
κ

⎧ ⎫ ⎧ ⎫⎡ ⎤⎧ ⎫
⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪

⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (14) 

where 

11 16 11 1611 16 11 16

16 66 16 6616 66 16 66

11 16 11 1611 16 11 16

16 66 116 6616 66 116 66

12 12

26 26 22 22

12 12 22 22

26 26

               

A A B BA A B B
A A B BA A B B
B B D DB B D D
B B D DB B D D

A B
A B A B
B D B D
B D

−

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥− ⎢ ⎥⎢ ⎥⎣ ⎦⎢ ⎥
⎢ ⎥⎣ ⎦

12 12
1

26 26

12 12

26 26

TA B
A B
B D
B D

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (15) 

and 

12 12
1

26 26 22 22

12 12 22 22

26 26

          

p
x
p p
xy y
p p
x y
p
xy

P
x
P
xy
P
x
P
xy

A BN
A BN A B N
B DM B D M
B DM

N
N
M
M

−

⎧ ⎫ ⎡ ⎤
⎪ ⎪ ⎢ ⎥ ⎧ ⎫⎡ ⎤⎪ ⎪ ⎪ ⎪⎢ ⎥=⎨ ⎬ ⎨ ⎬⎢ ⎥⎢ ⎥ ⎪ ⎪⎣ ⎦⎪ ⎪ ⎩ ⎭⎢ ⎥⎪ ⎪ ⎣ ⎦⎩ ⎭

⎧ ⎫
⎪ ⎪
⎪ ⎪− ⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

 
(16) 

Next, in order to find the governing equations of 
equilibrium Eqs. (9b) and (14) must be substituted into 
Eqs. (4), with 0y∂ ∂ = , to obtain: 

11 0 16 0 11 16

P
x

x y
dN

A u A v B B
dx

ψ ψ′′ ′′ ′′ ′′+ + + =  
 

16 0 66 0 16 66

P
xy

x y

dN
A u A v B B

dx
ψ ψ′′ ′′ ′′ ′′+ + + =  
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2
11 0 16 0 11 55 16

2 2
45 55       

x x y

P
Px

y x

B u B v D k A D

dMk A k A w Q
dx

ψ ψ ψ

ψ

′′ ′′ ′′ ′′+ + − +

′− − = −
 

 

2
16 0 66 0 16 45 66

2 2
44 45       

x x y

P
xy P

y y

B u B v D k A D

dM
k A k A w Q

dx

ψ ψ ψ

ψ

′′ ′′ ′′ ′′+ + − +

′− − = −
 

 

2 2 2
55 45 55 ( )x yk A k A k A w q xψ ψ′ ′ ′′+ + = −  (17) 

where a prime indicates differentiation with respect to 
x.  
 
2.2. FSDBT2 

Here it is assumed that the displacement field of the 
beam may be represented as: 

1 0

2 0

3

( , , ) ( ) ( )
( , , ) ( ) ( )

( , , ) ( )

x

y

u x y z u x z x
u x y z v x z x

u x y z w x

ψ
ψ

= +

= +

=

 (18) 

Upon substitution of Eqs. (18) into the linear strain-
displacement relations of elasticity, the following results 
will be obtained: 

0 0,    ,    0x x x y y y zz zε ε κ ε ε κ ε= + = + =  
0 0 0, ,yz yz xz xz xy xy xyzγ γ γ γ γ γ κ= = = +  (19) 

where 
0 0

0 ,    ,    0,    0x x x y yuε κ ψ ε κ′ ′= = = =  
0 0,    yz y xz x wγ ψ γ ψ ′= = +  
0

0xy vγ ′= ,   xy yκ ψ ′=  

(20) 

As far as the stress components are concerned, it is 
seen from Eqs. (19) and (20) that only zσ  and yσ  are 

needed to be assumed to vanish. That is: 

0zσ =  (21a) 
0yσ =  (21b) 

It is to be noted that the first assumption (21a) is 
also made in the classical, first-order, and third-order 
shear deformation laminated plate and shell theories. 
Hence, in the theory developed in the present work Eq. 
(21b) is the only additional assumption made as far as 
stresses are concerned. 

From Eq. (7a) the normal stress in the y direction is: 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

12 22 26 32
k k k k k k k k k

y x y xy zQ Q Q e Eσ ε ε γ= + + −  (22) 

Next, invoking the assumption (21b) in (22) results in: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
12 26 32( )

22

1 ( )k k k k k k k
y x xy zk Q Q e E

Q
ε ε γ= − + −  (23) 

Now by substituting ( )k
yε  form Eq. (23) into Eq. (7a) 

we obtain: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
11 16 31

( ) ( ) ( ) ( ) ( ) ( ) ( )
16 66 36

k k k k k k k
x x xy z

k k k k k k k
xy x xy z

C C e E

C C e E

σ ε γ

σ ε γ

= + −

= + −
 (24) 

where 
( ) ( )( )2

( ) ( ) ( ) ( ) 12 2612
11 11 16 16( ) ( )

22 22
( )2

( ) ( ) 26
66 66 ( )

22

,   
k kk

k k k k
k k

k
k k

k

Q QQC Q C Q
Q Q

QC Q
Q

= − = −

= −

 

( )( )
( ) ( ) ( ) ( ) ( ) ( )2612

31 31 32 36 36 32( ) ( )
22 22

,   
kk

k k k k k k
k k

QQe e e e e e
Q Q

= − = −  

(25)

Next, using the principle of minimum total potential 
energy the equilibrium equations can be shown to be: 

0 : 0xdNu
dx

δ =  

0 : 0xydN
v

dx
δ =  

: 0x
x x

dM Q
dx

δψ − =  

: 0xy
y y

dM
Q

dx
δψ − =  

: ( ) 0xdQw q x
dx

δ + =  

(26) 

where ( )q x  is the applied transverse load at z=-h/2. 
The force and moment resultants in Eqs. (26) are 
defined as Eqs. (6). Now substituting (24) and (7b) 
(and by using Eq. (19)) into (6) results in: 

011 16 11 16

0
16 66 16 66

11 16 11 16

16 66 16 66

P
xx x
P

xy xyxy

P
x x x

Pxy xy
xy

NA A B BN
N NA A B B
M MB B D D
M MB B D D

ε
γ
κ
κ

⎧ ⎫⎡ ⎤ ⎧ ⎫⎧ ⎫ ⎪ ⎪⎢ ⎥ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪= −⎢ ⎥⎨ ⎬ ⎨ ⎬ ⎨ ⎬
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪
⎢ ⎥⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭⎢ ⎥ ⎪ ⎪⎣ ⎦ ⎩ ⎭

 (27a) 

and 
0

44 452
0

45 55

p
y yz y

p
x xz x

Q A A Q
k

Q A A Q
γ
γ
⎧ ⎫ ⎧ ⎫⎧ ⎫ ⎡ ⎤ ⎪ ⎪ ⎪ ⎪= −⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎣ ⎦ ⎩ ⎭ ⎩ ⎭

 (27b) 

where 
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( ) 1 ( ) 2

1
, , (1, , )k

k

N z k
ij ij ij ijz

k
A B D Q z z dz+

=

=∑∫        

                              , 1,2,6i j =  

( ) ( )

( ) ( )

1

1

( ) ( )
31 36

1

( ) ( )
31 36

1

, ,

, ,

k

k

k

k

Na zP P k k
x xy z

k

Na zP P k k
x xy z

k

N N e e dz

M M e e zdz

+

+

=

=

=

=

∑∫

∑∫
 

(28) 

Finally, the governing equilibrium equations in 
FSDBT2 are obtained by substituting Eqs. (27) into 
(26): 

11 0 16 0 11 16

P
x

x y
dN

A u A v B B
dx

ψ ψ′′ ′′ ′′ ′′+ + + =  

16 0 66 0 16 66

P
xy

x y

dN
A u A v B B

dx
ψ ψ′′ ′′ ′′ ′′+ + + =  

2
11 0 16 0 11 55 16

2 2
45 55       

x x y

P
Px

y x

B u B v D k A D

dMk A k A w Q
dx

ψ ψ ψ

ψ

′′ ′′ ′′ ′′+ + − +

′− − = −
 

2
16 0 66 0 16 45 66

2 2
44 45       

x x y

P
xy P

y y

B u B v D k A D

dM
k A k A w Q

dx

ψ ψ ψ

ψ

′′ ′′ ′′ ′′+ + − +

′− − = −
 

2 2 2
55 45 55 ( )x yk A k A k A w q xψ ψ′ ′ ′′+ + = −  

(29) 

By comparing Eqs. (17) with Eqs. (29), it is 
observed that FSDBT1 and FSDBT2 result in similar 
equations of equilibrium. Each of these system of 
equations is five coupled second-order ordinary 
differential equations that can be solved for any sets of 
boundary conditions. Solutions of these equations, for 
the sake of brevity, will not be taken up here.  

In electrical loading case, we suppose that the 
electric field vary linearly within the kth actuator layer 
(see Fig. 2). That is; 

( )
1 1 2 2( ) ( ) ( ) ( )k k k k k

zE E x z E x zψ ψ= +  (30) 

where the linear interpolation functions of the kth layer 
(i.e. k

iψ ) are defined as: 

1
1 2 1, ,k kk k

k k
k k

z z z z z z z
h h

ψ ψ+
+

− −
= = ≤ ≤  (31) 

and 1
kE  and 2

kE  denote the electric field at kz z=  and 

1kz z +=  of the kth actuator layer (see Fig. 2). In Eqs. 
(31) kh  is the thickness of the kth actuator layer. 

 

kth actuator layer

E2
k

k
1E

z=zk+1

kz=z

z

hk

 
Figure 2. Linear distribution of electric field 

intensity through the thickness of an actuator layer 
 
 
Next, the electric forces and moments can be 

evaluated as: 
( )( )

11 12 16 31

12 22 26 32
1

16 26 66 36

1 2

1 .
2

             ( )

kkP
x Na
P
y

kP
xy

k k

N Q Q Q d
N Q Q Q d
N Q Q Q d

E E

=

⎧ ⎫⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎩ ⎭

+

∑  (32a) 

( )( )

11 12 16 31

12 22 26 32
1

16 26 66 36

1 2

1 .
6

            ( 3 ) (2 3 )

kkP
x Na
P
y

kP
xy

k k
k k k k k

N Q Q Q d
N Q Q Q d
N Q Q Q d

E h z E h z h

=

⎧ ⎫⎡ ⎤⎧ ⎫
⎪ ⎪⎢ ⎥⎪ ⎪ =⎨ ⎬ ⎨ ⎬⎢ ⎥

⎪ ⎪ ⎪ ⎪⎢ ⎥
⎩ ⎭ ⎣ ⎦ ⎩ ⎭

⎡ ⎤+ + +⎣ ⎦

∑
 (32b) 

If electric field intensity through the thickness of each 
layer be constant, then it can be approximated by: 

1 2
k k k

k

VE E
h

= =  (33) 

 
 

3. NUMERICAL RESULTS 
 
The effectiveness of the new beam theory FSDBT2 

is demonstrated through examples of static bending of 
general laminated composite beams subjected to 
electro-mechanical loadings. The assessment of 
accuracy of FSDBT2 for the case of bending of 
laminated beams will be obtained by comparing the 
results with those obtained by FSDBT1. 

Several numerical examples are solved for 
laminated composite beams consist of piezoelectric 
layers bonded on the top and bottom surfaces of the 
beam. Graphite/epoxy composite material and PZT-4 
are selected for the substrate orthotropic layers and 
piezoelectric layers, respectively. The material 
properties for graphite/epoxy T300/5208 orthotropic 
layers of the substrate are [15]: 

1 132GPaE = ,   2 10.8GPaE =  
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12 5.65GPaG = ,   23 3.38GPaG =   

12 0.24ν = ,   23 0.59ν =   (34) 

where the subscripts 1, 2, and 3 indicate the on-axis 
(i.e., principal) material coordinates. Also material 
properties for PZT-4 piezoelectric layers are [16]: 

139 77.8 74.3 0 0 0
78 139 74.3 0 0 0

74.3 74.3 115 0 0 0
[ ] GPa

0 0 0 25.6 0 0
0 0 0 0 25.6 0
0 0 0 0 0 30.6

C =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

2

0 0 0 0 12.7 0

[ ] 0 0 0 12.7 0 0 C/m

5.2 5.2 15.1 0 0 0

e =

− −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

(35) 

The laminated beams are assumed to have the total 
thickness h=0.06m and length L=10h. All orthotropic 
layers and also piezoelectric layers are assumed to 
have equal thicknesses. For all numerical examples, it 
is assumed that the beams have simply supported 
boundary conditions. In electrical loading case, the 
same voltage is applied across the two actuator layers 
with opposite polarity. 

Figs. 3 and 4 show through the thickness 
distributions of normalized axial stress xσ  and 

transverse shear stress xzσ , respectively, at x=L/3 of a 
[P/0o/90o]s laminated composite beam under uniform 
transverse load. Also through the thickness 
distributions of normalized axial stress xσ  and 

transverse shear stress xzσ  at x=L/3 of a [P/0o/90o]s 
laminated composite beam under electrical loading are 
shown in Figs. 5 and 6, respectively. It is noted that P 
in [P/0o/90o]s denotes piezoelectric layer with 0o 
rotation with respect to the x axis. It is observed that in 
electrical loading the transverse shear stress xzσ  is 
equal to zero. 

The numerical results of Figs. 3-6 indicate that 
FSDBT1 and FSDBT2 give us completely similar 
results for stress components of a cross ply laminated 
composite beam subjected to both mechanical and 
electrical loadings. 

 
 

 
Figure 3. Through the thickness distribution of xσ  at 
x=L/3 of a [P/0o/90o]s laminated beam under uniform 

transverse loading 
 
 

 
Figure 4. Through the thickness distribution of xzσ  at 
x=L/3 of a [P/0o/90o]s laminated beam under uniform 

transverse load 
 
 

 
Figure 5. Through the thickness distribution of xσ  at 
x=L/3 of a [P/0o/90o]s laminated beam under electrical 

loading 
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Figure 6. Through the thickness distribution of xzσ  at 
x=L/3 of a [P/0o/90o]s laminated beam under electrical 

loading 
 
 
Next, in order to verify the correctness and 

accuracy of FSDBT2 a laminated beam with a general 
lamination is considered. Here, for example, we 
consider a [P/20o/40o/60o/80o/P] laminated beam 
subjected to electro-mechanical loadings. The 
variations of normalized axial stress xσ  and transverse 
shear stress xzσ  at x=L/3 through the thickness of a 
beam with general lamination [P/20o/40o/60o/80o/P] 
subjected to a uniform transverse load are shown in 
Figs. 7 and 8, respectively. Similar result for 
normalized axial stress xσ  of the aforementioned 
laminated beam subjected to electrical loading is 
displayed in Fig. 9. It is seen from Figs. 7-9 that there 
are excellent agreements between the FSDBT1 and 
FSDBT2 for this unsymmetric laminated composite 
beam with piezoelectric layers for both mechanical 
and electrical loadings. 

Finally, Fig. 10 presents the distributions of 
normalized transverse shear stress xzσ  through the 
thickness of [P/20o/40o/60o/80o/P] laminated beam 
subjected to a uniform transverse load at various 
values of the length coordinate x. 

 
 

 
Figure 7. Through the thickness distribution of xσ  at 

x=L/3 of a [P/20o/40o/60o/80o/P] laminated beam 
under uniform transverse loading 

 
 

 
Figure 8. Through the thickness distribution of xzσ  at 

x=L/3 of a [P/20o/40o/60o/80o/P] laminated beam 
under uniform transverse loading 

 
 

 
Figure 9. Through the thickness distribution of xσ  at 

x=L/3 of a [P/20o/40o/60o/80o/P] laminated beam 
under electrical loading 
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Figure 10. Through the thickness distribution of xzσ  

at various values of the length coordinate x of a 
[P/20o/40o/60o/80o/P] laminated beam under uniform 

transverse loading 
 
 

4. CONCLUSIONS 
 
Within a first-order shear deformation theory, a new 

laminated beam theory with general lamination is 
developed. The structure consists of piezoelectric 
layers bonded on the top and bottom surfaces of the 
laminated composite beam. The approach adopted in 
the derivation of the equilibrium equations in the new 
beam theory is direct and straightforward similar to the 
ones used in developing laminated plate and shell 
theories. The ideas developed in the present work may 
readily be used in developing higher-order shear 
deformation and layerwise laminated beam theories. 
For the assessment of the accuracy of this theory, 
analytical solutions are obtained and compared with 
those of the existing first-order beam theory. It is 
found that the new beam theory can predict accurately 
displacements and stresses in the beams subjected to 
both mechanical and electrical loadings. 
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