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ABSTRACT
 

Ant colony optimization (ACO), a heuristic method formerly applied on combinatorial problems in the 
field of applied mathematics and industrial engineering, is described and employed for the multi-
objective optimization of hybrid laminates for obtaining minimum weight and cost. The investigated 
laminate is made of glass-epoxy and graphite-epoxy plies to combine the lightness and economical 
attributes of the first with the high-stiffness property of the second using the weighting sum method in 
order to make the trade off with the cost and weight as the objective functions and the first natural 
frequency as the constraint possible. The results obtained by ACO including the Pareto set, optimum 
stacking sequences and number of plies made of either glass or graphite fibers are compared with 
those achieved by the GA reported in literature. The comparison, besides confirming the idea of 
hybridization, clearly shows that the ACO has outperformed GA or resulted in identical solutions. In 
the latter case, it seems that both GA and ACO have reached the global optimums. 

 
 

1. INTRODUCTION 
 

Laminated composites have been extensively 
used as structures in aerospace, defense, marine, 
automobile and many other industries. This is 
because of the fact that they are generally lighter and 
stiffer than the other structural materials. In contrast 
to isotropic materials, there are also some additional 
attributes in their design regarding the fiber 
orientations and stacking sequence which can be set 
in order to achieve the maximum efficiency. 
Optimization methods are the best and sometimes 
the unique means of utilizing these capacities. 

In all applications, it is ideal to have the stiffest 
and meanwhile lightest and most economical 
structures. These three that normally act against each 
other, may come in compromise with the help of 
hybridization of composite laminates in which the 
high-stiffness material that is generally more 
expensive and heavier is used in the outer layers to 
provide enough rigidity and stiffness. The material 
which is used in the inner layers is low-stiffness, 
lighter and inexpensive. 

Deflection, stress and natural frequencies are 
some supplementary aspects which have been 
investigated in hybrid laminates in a multi-objective 
optimization process. Maximizing natural 
frequencies especially the fundamental one is of 
critical importance in the design of laminates to 

decrease the risk of resonance caused by external 
excitations. Number, material and thickness of the 
surface and core layers as well as fiber orientations 
are the design variables in this process. However, in 
many engineering applications, it is reasonable to 
make use of standard layers with certain thicknesses 
and limited number of angles. 

Single-objective maximization of the fundamental 
frequency for laminated plates was given by Bert [1, 
2], Reiss and Ramachandran [3] and Grenestedt [4] 
using continuous design variables. The same design 
for cross-ply laminates was studied by Duffy and 
Adali [5] and for anisotropic laminates by Adali [6]. 
Minimum cost design of laminated plates 
undergoing free vibrations was investigated by Adali 
and Duffy [7]. Adali and Verijenco [8] discussed the 
optimum stacking sequence design of symmetric 
hybrid laminates undergoing free vibrations for 
fundamental frequency and frequency separation. 
Regarding multi-objective optimization, Spallino 
and Rizzo [9] presented the discrete optimization of 
laminated structures. Tahani et al. [10] optimized the 
fundamental frequency and cost in a multi-objective 
procedure using genetic algorithm (GA) and 
Kolahan et al. [11] also solved the same problem 
with the help of simulated annealing (SA). 

In the present study, considering free vibrations of 
symmetric balanced hybrid laminates as the design 
constraint, weight and cost are optimized. The ant 
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colony optimization (ACO) is the method employed. 
Ant colony optimization is a nature-inspired 
constructive based method which was first 
introduced by Dorigo in 1997 [12] and so far has 
been extensively applied on various types of 
combinatorial problems such as traveling 
salesperson problem (TSP) [12], quadratic 
assignment, vehicle routing [13] and job-shop 
scheduling (JSP) [14]. 

In the field of structural optimization, a few 
works being optimized by ACO have been reported. 
Camp et al. [15] studied the application of ACO for 
designing steel frames. Christodoulou [16] presented 
the optimal truss design using ACO. Kolahan et al. 
[17] also optimized a helical compression spring to 
achieve the minimum weight. As its application in 
structural optimization is a new topic of 
investigation, the results are compared to GA 
reported by Grosset et al. [18]. 

The remainder of this paper is organized as 
follows. In section 2, a brief description of free 
vibration analysis in laminated plates is presented. 
Ant colony optimization is introduced in section 3 
and the optimization problem is defined in section 4. 
In section 5, multi-objective optimization is 
summarized and section 6 reports the numerical 
results. Finally, conclusions are given in section 7. 

 
  

2. FREE VIBRATION ANALYSIS 
 

Consider a simply supported symmetric hybrid 
laminated plate of length a, width b and thickness h 
in the x, y and z directions, respectively. Each of the 
material layers is of equal thickness t and idealized 
as a homogeneous orthotropic material. The total 
thickness of the laminate is equal to tNh ×=  with 
N being the total number of the layers. 

The hybrid laminate is made up of Ni inner and 
NO outer layers so that oi NNN += . The governing 
equation of motion within the classical laminated 
plate theory for the described symmetric laminate is 
given by (see [19]): 
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where w is the deflection in the z direction, h is the 
total thickness and ρ  is the mass density averaged 
in the thickness direction which is given by: 
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where )(kρ denotes the mass density of material in 
the kth layer. 

The bending stiffnesses ijD  in Eq. (1) are defined 

as: 
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where )(k
ijQ is the transformed reduced stiffness of 

the kth layer. 
The boundary conditions for the simply supported 

plate are given by: 
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where the moment resultants are defined as: 
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It is shown by Nemeth [20] that in buckling 
problems, the terms 16D  and 26D  which 
demonstrate the bending-twisting interactions in 
composite laminates, can be safely neglected if the 
non-dimensional parameters 
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satisfy the constraints 

2.0     ,    2.0 ≤≤ δγ                                               (7) 

Because of the analogy between buckling and 
free vibration analysis, the same constraints are used 
to reduce the complexity of the problem. 

Taking into account the governing equation (1) 
and the boundary conditions in (4), a general form of 
solution for w in the natural vibration mode (m,n) is 
presented as: 
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where mnω  is the natural frequency of the vibration 

mode (m,n) and 1−=i . 
Substituting Eq. (8) into (1) yields: 
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Different mode shapes are obtained by inserting 
different values of m and n where for the 
fundamental frequency, both are put equal to one. 
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3. ANT COLONY OPTIMIZATION 
 
 Real ants are biologically blind; however, they are 
capable of finding the shortest path from a food 
source to their nest without using any visual cues. 
This amazing capability is based on a simple fact. 
Ants secrete pheromone, a chemical substance, with 
a constant rate on the paths they march on and also 
are able to sense the intensity of pre-deposited 
pheromone in the environment. They also prefer to 
follow the paths with higher amount of pheromone 
but this tendency is not deterministic. Therefore in 
general, if more ants march on a certain path, more 
pheromone will be accumulated and the path will be 
even more desirable. This behavior is 
comprehensively shown in Fig. 1. 
 

 

Figure 1. The behavior shown by ants when 
encountering an obstacle on their path [12] 

 
Let’s suppose that due to an obstacle between 

points A and E, two different paths namely ABCDE 
and ABHDE are identifiable. Two groups of 30 ants 
arrive at points D and B and they decide either going 
through BCD or BHD. As this is the start of path 
exploration, no pheromone exists on each of the 
paths and therefore there are no preferences. After a 
time step, as the path BCD is shorter and the rate of 
pheromone secretion is constant, more pheromone is 
accumulated on it and therefore it will be more 
desirable for next groups. The process continues till 
path BCD is so highlighted that practically path 
BHD looses all its preference. 

The behavior is very simple and not even fully 
deterministic but effective enough as it is 
cooperative. All this behavior is simulated with a 
little difference in the ACO algorithm [12]. The 
artificial ants employed in ACO are not fully blind, 
i.e. they have general information about the search 
space, have a memory of the length of the path they 
have explored and also live in an environment where 
time is discrete so the decisions are made in a step-
by-step procedure. To understand the ACO 
algorithm, knowing the application of it on the TSP 

problem is essential as the algorithm have three 
distinct operators first defined and best described 
based on this problem. 
 TSP problem is in fact a group of problems being 
one of the most distinguished challenges in the 
history of applied mathematics, making it a reliable 
benchmark for optimization methods. In this 
problem, there are n cities where finding the shortest 
tour including all cities being visited for just one 
time and ending in the first city is desired. The ACO 
algorithm employs m ants which are spread 
randomly on the cities. The ants start building their 
tour individually and come to the end of iterations 
altogether. Three basic rules called “state transition 
rule”, “global updating rule”, and “local updating 
rule” build the foundation of this algorithm. 
 
3.1 State Transition Rule 
 Unlike other heuristic methods such as tabu 
search, genetic algorithm and simulated annealing 
where the coded solution candidate is built 
altogether and then evaluated, the ants construct the 
solution in a step-by-step procedure in the ACO. It 
means each ant should decide where to go for its 
next step by selecting among all unvisited candidate 
elements. The mechanism used in the ACO is a 
combination of directed greedy behavior and Rolette 
wheel known as state transition rule. The ant arrived 
at the city i chooses the next city among unvisited 
cities according to the following mechanism: 
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where ),( jiτ  is the amount of pheromone related to 
the path between cities i and j, and ),( jiη  is the 
heuristic function defined here as the inverse of 
distance between these two cities. The heuristic 
function is an operator in ACO which is defined 
according to the nature of the involved problem as it 
can be distance like in TSP problem or any other 
concepts such as cost or time. It has the rule of 
guiding and accelerating the convergence but is not 
vital to the concept of ACO. As can be seen, the total 
decision term is a combination of both pheromone 
and heuristic functions with the latter having a 
power of β . 

The state transition rule consists of two sub-rules, 
while q and 0q determine which one to be used. The 
constant parameter 0q  demonstrates the relative 
importance of sub-rules; however, q is a randomly 
generated number, uniformly distributed in domain 
[0,1]. 
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If there comes 0qq ≤  which is the case of 
exploitation, the city with the largest combination of 
pheromone and heuristic is chosen. Otherwise, the 
algorithm does not decide deterministically but only 
gives chances to the elements in proportion to their 
values as it is in a Rolette wheel; which means the 
city with the largest calculated term is not 
necessarily chosen. Thus, exploration of candidates 
with smaller function values is made feasible. In 
general, the ants act in a parallel manner. Their first 
elements of solution are assigned randomly and then 
to the end of constructing the solution, state 
transition rule is repeated. 
 
3.2 Global Updating Rule 

In ACO, the globally best ant which is the ant that 
has constructed the best solution from the beginning 
of the trial is allowed to deposit pheromone on its 
trail, even though no better tour is found in several 
consequent iterations. This rule which acts as 
positive feedback makes the search for the real best 
solution more directed. The rule is given by: 

),(.),().1(),( prprpr τατατ ∆+−=                   (12) 

1)(1),( −==∆ gbL
F

prτ                                       (13) 

where α  is a coefficient that acts to decrease the 
amount of pheromone inspired by evaporation in 
nature. The added amount of pheromone is obtained 
by inversing the objective function F which is the 
globally best tour length gbL  obtained from the 
beginning of the optimization. 
 
3.3 Local Updating Rule 

To avoid premature convergence and just like the 
natural phenomenon happening in nature due to 
evaporation, a local pheromone trail updating is 
performed on the value of pheromone related to the 
pair of cities just chosen by state transition rule: 
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It should be noted that the decay parameter ρ is 
chosen from domain [ ]1,0 . Also in general, 0τ  which 
is the initial amount of pheromone, is calculated as 
the inverse of a rough estimate of the objective 
function multiplied by n, the problem dimension. In 
TSP, this approximation can be obtained by greedy 
methods. 
 
3.4 Modifications in the ACO Concept  

The TSP problem, on which the ACO was 
described, belongs to a group of problems in which 
the final solution is a string that includes all the 
elements of search space and therefore the design 
variables are not defined or even exist in the familiar 
way as is known in classical optimization. In 

contrary, most of the problems defined in the field of 
mechanical and structural engineering have distinct 
design variables that should be clearly and 
arithmetically stated at the end of optimization 
process. Consequently, the number of design 
variables should be defined in analogous to the 
concept of cities in TSP. This indicates that the 
pheromone function (or probably the heuristic 
function) that was defined between the elements of 
solution (cities in TSP) should now be assigned on 
them. 

It also means that reminding the analogy to TSP, 
the allowable numerical values of discrete variables 
can be modeled as the zones of cities which no 
movement between the zones are permitted and only 
an ant can go from a zone to a zone in another city. 

Defining the heuristic function brings another 
dimension of intricacy to the applying of ACO on 
most problems. This is because of the fact that 
defining a measurable and meaningful concept 
between any two elements of search space during 
the solution (before completing its construction), and 
meanwhile giving it a clear relevance to the 
objective function is generally very complex. 
Therefore, as done in this paper, and without 
damaging the overall effectiveness of ACO [12], this 
function is neglected. 

In constrained optimization that is the case here, 
the solutions which do not satisfy the constraint 
should be omitted. Regarding the programming 
strategies, this can be done by detecting these 
solutions and omit them before evaluation or check 
their status and add a considerably big amount to 
them after that. The latter case which is known as 
penalty function approach is used here as involves 
simple modifications in the original code. 

At the end of this section, it might be helpful to 
summarize all the above explanations in the 
following pseudo-code: 
 
The ACO Pseudo-Algorithm: 
Initial parameter setting 
Repeat for each iteration 
 Repeat for each ant 
  Set the Initial point for each ant 
  Repeat for (No. of design variables-1) 
   Perform “the state transition rule” 
   Perform “the local updating rule” 
  Update the best global solution 
 Perform “the global updating rule” 
 Check the end condition 
Report the best solution 

 
 
4. Problem Description 
 

The design problem here is the selection of the 
optimal stacking sequence to obtain the 
simultaneous minimization of the weight and cost of 
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a rectangular laminated plate of length 36=a in. and 
width 30=b in., later converted to metric scale, 
subjected to a constraint on the first natural 
frequency having the lower bound of 25 Hz. This 
frequency is calculated based on the formulations 
presented in section 2. 

In this problem, the concept of hybridization 
using a two-material composite in which high-
stiffness and more expensive graphite-epoxy is used 
in the outer layers and inexpensive low-stiffness 
glass-epoxy in the inner layers is considered. This 
way besides providing suitable structural rigidity, 
cost reduction which is always a significant and 
worthy goal can be achieved. 

The stiffness-to-weight ratio of graphite-epoxy is 
about four times higher than that of glass-epoxy, 
with 345/1 =ρE against 5.87/1 =ρE . However it 
is also more expensive, with a cost per kilogram that 
is 8 times higher than that of glass-epoxy. If the first 
priority is weight, then graphite-epoxy will be 
preferred; while if cost is paramount the optimum 
laminate will obviously contain glass-epoxy plies. 
The design of this simple rectangular plate leads us 
to study the trade-off between these two objective 
functions. 

The problem investigated here, as mentioned 
earlier is taken from [18] where the results are given 
using GA. No modifications in the problem are done 
in order to compare the reported results with the 
ones obtained by ACO. 

The initial design is supposed to have 44 layers 
but this may vary by the algorithm in order to 
achieve the optimal design. The fiber orientation can 
take any value from a set of 19 angles ranging from 
0  to 90  in steps of 5 . The laminate is considered 
symmetric and balanced. Being symmetric is a 
practical assumption which is of great advantage in 
problem simplification as only half of the laminate is 
needed for optimization. In addition, the requirement 
that the laminate be balanced can be easily enforced 
by using pairs of θ±  layers. This supposition is 
taken in order to minimize shear-extension and 
bending-twisting effects. Although 0  plies and 90  
layers do not need to come in pairs, they are treated 
like other angles due to programming necessities but 
with half the normal thickness to simulate a single 
ply.  

 
 

5. MULTI-OBJECTIVE APPROACH 
 

The purpose of multi-objective optimization is 
different from that of single-objective optimization. 
In the latter, the goal is to find the best solution, 
which is the design that minimizes (or maximizes) 
the objective function. In contrast, in multi-objective 
optimization there is no single solution that 
minimizes (maximizes) all the objective functions. 

Indeed, the objective functions often conflict, as a 
design that decreases one objective will increase 
another. The interaction between the objective 
functions gives rise to a set of compromise solutions 
called Pareto set. A solution belongs to the Pareto 
set if there is no other design such that all the 
objective functions are lower at the same time. The 
designer will then need to use additional information 
to prioritize the objective functions in order to 
choose between the elements of the Pareto set. In 
this paper, the Pareto set is generated by optimizing 
a convex combination of the two objectives, weight 
W and cost C for a series of values of the 
multiplierα  as: 

CWF )1( αα −+=                                            (16) 

Several values of α  are chosen successively and 
the combined objective function is minimized using 
a single-objective optimizer based on ant colony 
optimization. If the Pareto set is convex, this 
procedure yields points that belong to the Pareto set. 

 
 

6. NUMERICAL RESULTS 
 

The problem described in previous sections is 
solved by ant colony optimization code written in 
Matlab software and run on Pentium IV 2400 GHz 
CPU. The properties of glass-epoxy and graphite-
epoxy laminates are taken from [21] and presented 
in Table 1. 

 

Table 1. Glass-epoxy and graphite-epoxy 
mechanical properties 

Parameters Graphite-
epoxy 

Glass-
epoxy 

Longitudinal modulus (GPa) 137.9 43.4 
Transverse Modulus (GPa) 8.96 8.89 
In-plane shear modulus (GPa) 7.1 4.55 
Poisson ratio 0.3 0.27 
Material density (kg/m3) 1587 1970 
Layer thickness (mm) 0.127 0.127 
Cost factor 8 1 

 
 The parameter setting employed in ACO code is 
also given in Table 2. 
 

Table 2. ACO parameter settings 

Cycles 0q  0τ  ρ  α  n  

2000 0.5 0.03 0.1 0.1 10 

  
In order to construct the Pareto front, the 

weighting factor α  is varied from 0.0 to 1.0 for 
certain amounts and the objective function F is 
minimized for each state. Running the program for 
at least 5 times in order to make sure about the 
convergence, the results are obtained and compared 
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to GA as summarized in Table 3. It is notable that 
with the intention of illustrating the material of each 
layer in the final stacking sequence notation, the 
graphite layers are shown by plain numbers while 
the glass layers are represented by underlined 
numbers. 
 In a general view, it can be easily detected that for 
the seven different values of α  for which the 
objective function is minimized, the ACO and GA 
results are identical in 5 cases, where it seems both 
have come to the global optimums. In the other two 
cases, the ACO has outperformed GA. This 
definitely demonstrates that the ACO method can be 
considered a promising and powerful algorithm in 
comparison to the prominent GA which is known as 
the most flexible heuristic approach. 

The second general issue is associated with 
orientation patterns obtained by GA and ACO where 
it seems that the GA has resulted in better arranged 
sequences with less diversion in angles. In fact, if 
the natural frequency was an objective function 
besides cost or weight, the sequence and value of 
angles would be much more important. In the case 
investigated here, the natural frequency is just a 
constraint that should be satisfied. Even if obtaining 
the stacking sequence with the lowest amount of 
objective function, satisfied constraint of the first 
natural frequency and also maximum amount of this 
frequency is considered in the problem, which seems 
is the case in [18], the difference between 
frequencies of the optimums is less than 2% which 
can be easily neglected and is not practically 
significant. In fact, the number of layers and the 
material of which the layers are made are the only 
two factors that play a role in minimization of the 
objective function which is the weighted 
combination of the cost and weight of the laminate. 
 The results related to situations with the 
weighting factor equal to 0.0 and 1.0 are the first 
two which are important to be explained. In the case 
of 0.0=α , the problem is reduced to single-
objective optimization for cost minimization. The 
code is expected to result in a laminate with the 
layers all made of glass plies. The result confirms 
the above deduction as a laminate with 42 layers of 
glass plies is obtained. 
 For 0.1=α , the only active objective is the 
weight and consequently a laminate with all layers 
made of graphite-epoxy is expected. The results of 
both GA and ACO prove this assumption like the 
previous case with the optimum being a 22-ply 
laminate. It is obvious that graphite-epoxy is stiffer 
than glass-epoxy and can fulfill the requirement for 
the minimum value of the first natural frequency 
with less number of plies. 
 For the other values of the weighting factor, it is 
the interaction of objectives that form the optimum 
designs and thus the interpretations can not be 
straightforward as before; however, there are some 

general points to be noted. Without any 
implementation in the codes, both GA and ACO 
have achieved designs in which the layers made of 
graphite-epoxy have appeared in the outer layers and 
those made of glass-epoxy in the inner ones. This 
creates a sandwich-type composite where the 
structural function is assured by the stiff graphite 
layers, placed on the outside, where their 
contribution to the flexural properties of the laminate 
is maximal, while inner layers are merely used to 
increase the distance of the outer plies from the 
neutral plane and to reduce the total cost. 
 Contribution of layers with angles ranging from 

40±  to 60± is in order to maximize the first 
natural frequency of the plate. The appearance of 
0 or 90 plies is due to a different reason. Although 
these plies do not contribute much to the frequency, 
it is advantageous to use them as unlike other angles, 
they do not come in pairs which saves unnecessary 
additional weight and cost. In addition, the 0  plies 
always come into view in the inner layers where 
they are the least damaging for the performance of 
the plate. 
 Figs. 2-4 show the convergence histories related 
to the optimization process done for weighting 
factors of 0.0=α , 87.0=α  and 0.1=α , 
respectively. They are selected as the first and the 
third demonstrate the capabilities of ACO in single-
objective and the second one in multi-objective 
optimization. It is easily identified that the ACO has 
converged very quickly in the first few iterations. 
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Figure 2. Convergence history for 0.0=α  

 
Unfortunately, no time history is reported in [18] 

to make the comparison of convergence rate 
possible. It can just be reported that the ACO has 
obtained the optimum design in a period of time 
ranging from 0.15 to 15 seconds which is reasonable 
regarding the size of the problem. To think of the 
importance of employing optimization methods 
especially robust heuristics such as the ACO in 
acquiring the optimum stacking sequence in such 
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problems, it can be noted that in the present 
problem, the average ratio of the total number of 
feasible stacking sequences needed to be evaluated 
by direct enumeration to the number of evaluated 
designs by the ACO is approximately of the order of 
1013. 
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Figure 3. Convergence history for 87.0=α  
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Figure 4. Convergence history for 0.1=α  

 
Finally, the Pareto front obtained by employing 

the ACO and using the weighted sum method is 
shown in Fig. 5. The solid line represents the set of 
solutions of the composite objective function for the 
different values of α. The various symbols show all 
the feasible designs that were generated during the 
search. The Pareto front is the set of all the non-
dominated solutions, which corresponds to the lower 
envelope of all the design points in the weight/cost 
plane. This confirms the validity of our method for 
constructing the Pareto front. 

The Pareto trade-off curve can be used to help the 
designer determine the optimal configuration for his 
problem. The final choice of the best design will 
depend on additional information that will enable 
him to assign priorities to the two objectives. There 
is no single best design and depending on the 

application that is considered, the choice will be 
different. 
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Figure 5. Pareto set of non-dominated solution obtained 
by the weighted sum method. The solid line shows the 

Pareto front. The symbols represent all the feasible 
solutions calculated by the ACO for the different values 

of the weighting factor. 
 
 

7. CONCLUSIONS 
 

The problem of obtaining minimum cost and 
weight in hybrid laminates was investigated. The 
laminate chosen with certain geometrical 
specifications was symmetric balanced and made of 
glass-epoxy and graphite-epoxy layers. The design 
variables were the number of layers made of glass or 
graphite fibers as well as the fiber orientations. The 
optimization process was constrained by the first 
natural frequency of the plate to be not less than a 
predefined value. The approach chosen for doing the 
multi-objective optimization was also the weighted 
sum method. 
 The ant colony optimization (ACO) was the 
method employed to solve this problem. The results 
were presented for different weighting factors and 
finally the Pareto front curve was constructed. The 
results were also compared to those obtained by the 
GA reported in the literature. This comparison not 
only confirmed the ACO results, but also showed 
that the ACO has outperformed GA in some cases or 
at least has resulted in identical designs. Considering 
the fact that GA is referred to as the most flexible 
and versatile heuristic method, it can be proposed 
that the ACO can perform as a robust and promising 
algorithm in different fields such as structural 
optimization and composites design. 
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