ANALYTICAL STUDY OF PIEZOELECTRIC ACTUATED
LAMINATES UNDER TRANSVERSE LOADING

M. Tahani and A.M. Naserian-Nik

Department of Mechanical Engineering, Faculty of Engineering,
Ferdowsi University of Mashhad, P.O.Box 91775-1111, Mashhad, Iran
mtahani@ferdowsi.um.ac.ir

ABSTRACT

This paper deals with analytical solution of piezoelectric laminated composite plates with arbitrary lamination
and boundary conditions subjected to electromechanical loadings. A new first-order shear deformation plate
theory is developed based on separation of spatial variables of displacement field components. Two systems of
coupled ordinary differential equations with constant coefficients are obtained by using the principle of
minimum total potential energy. The obtained equations are solved analytically with the aid of the state-space
approach. The results obtained from this theory are compared with the Levy-type solutions of antisymmetric
angle-ply laminates with various admissible boundary conditions to verify the validity and accuracy of the
present theory. It is seen that the present results have excellent agreements with those obtained by Levy-type
method. Since the procedure used is simple and straightforward, it can readily be adopted in developing higher-
order shear deformation and layerwise laminated plate and shell theories.

1. INTRODUCTION

Since about two decades ago, several papers have been devoted to the theoretical study of
piezoelectric laminated plates and beams. Crawley and de Luis [1] studied the electroelastical
properties of a piezoelectric/elastic laminated beam with its extension mechanism. Lee and
Moon [2] and Lee [3] used Kirchhoff plate theory to develop a simple theory for laminated
plates with distributed piezoelectric layers. Wang and Rogers [4] developed analytical
solutions based on the classical laminate plate theory (CLPT) for plates with surface-bonded
or embedded piezoelectric layers. Jonnalagadda et al. [5] employed first-order shear
deformation theory (FSDT) to solve the piezothermoelastic response of hybrid plates.
Mitchell and Reddy [6] used higher-order shear deformation theory (HSDT) based on single-
layer theory for mechanical displacement of rectangular hybrid laminates. A coupled, FSDT
for multilayered piezoelectric plates was proposed by Huang and Wu [7]. Kapuria et al. [8]
presented a Levy-type solution for the bending of cross-ply, hybrid, plates using a mixed
formulation of FSDT and CLPT. Zhang and Sun [9] utilized the variation principle to derive
the governing equations of sandwich plates containing a piezoelectric core using the shear
mode of piezoelectric materials. Vel and Batra [10-12] provided the analytical solutions to
study the generalized plane strain deformations of piezoelectric laminated plates subjected to
arbitrary boundary conditions via Eshelby-Stroh formalism. By the use of the trigonometric
series, Zhang et al. [13] obtained exact solutions of thermoelectroelastic laminates with
simply supported boundaries. Recently, Cheng et al. [14] obtained governing equations for
the anisotropic piezoelectric laminated plate, based on Hamilton's principle and assumption of
Reddy's simple high-order theory.

The purpose of the present study is to develop an analytical method for bending analysis of
piezoelectric laminated plates with arbitrary lamination and boundary conditions. As the
numerical result, an anisymmetric angle-ply hybrid plate under various sets of boundary
conditions is examined. The comparison of the results with those obtained from the Levy-type
solution shows an excellent agreement. The approach adopted in the present work will be
demonstrated within the framework of a FSDT. However, the idea is straightforward and
general and can readily be used in developing higher-order shear deformation and layerwise
laminated plate and shell theories.



2. FORMULATION OF THE PROBLEM

2.1- Strain field

Figure 1 shows an undeformed plate of uniform thickness h in a Cartesian coordinate system
(x,y,2), where the midplane of the plate coincides with z = 0. The plate has a width b in the
lateral (y-) direction, and length a in the longitudinal (x-) direction. It is composed of arbitrary
N orthotropic layers which some of them can be piezoelectric. Here, the theory will be
developed within the framework of the FSDT [15]. To this end, it is assumed that the
components of the displacement field of the plate may be presented as:

u(x.y, 2) = u; (U (¥) + 2 ()77 (y)

V(X y,2) =v; () Vi () + 24, ()¢5 (Y) i=12..n (1)

w(x,y)=w; (X W; (y)
where, for the sake of brevity, the Einstein summation convention has been introduced — a
repeated index indicates summation over all values of that index. In equations (1) u(x,y.z),
v(x,y,z) and w(x,y,z) are, respectively, the displacements in X, y, and z directions, and u; (x),
Gy), Vi), Vi(y), wi (%), % (¥), 4(x), 4(y), w;(x), and w; (y) are unknown functions.
Also n is the total number of terms considered in the summation.

Figure 1 : The plate geometry and coordinate system.

Substitution of the displacement field (1) into the linear strain-displacement relations of
elasticity yields a new form of strain-displacement relations as below:
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2.2- Equilibrium equations

Next, using the principle of minimum total potential energy [16], equilibrium equations and
boundary conditions corresponding to the independent variables can be shown to be:

i le ) dN>I(y2 i
5Ui. dx N:(yl—O &/i' dX N;/:O
dMi . . dl\/|i ; ;
dvis Sl -Qlh=0, o =2 -M)-Q)y=0 ®)
d
o, 3*2 Qi +Gi(X) =0
and
dNl dN? o
& dxyl Ni=0, ov: d—y—N;yzzo
y y
odM, _dm!
o7 — 2 -M-Qy=0, p: —L- xy2 Qvl_

dy dy



dQ,,

i ay -Qx +Gi(y)=0 (4)

In the above equations the generalized stress resultants, g;(x), and g;(y) are defined as:
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In addition, the stress resultants are:
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The primary and secondary variables of the theory are:
For edges parallel to y-axis (i.e., x=0,a);
Primary variables: U, Vi, i, &, W,
A i i i . i i:l,2,...,n (9)
Secondary variables:  Nx. N, My, M, Qy
For edges parallel to x-axis (i.e., y=0,b);
Primary variables: T .V.. 7. . ¢ . W.
Y Vv d W g, n (10)

Secondary variables: ﬁiyl , N)i, ‘ Mxyl M. Qy,

2.3- Laminate constitutive relations
The linear constitutive relations for the kth lamina of the hybrid laminate are given by [15]:

{3 = QI -1 (EN™ (12)

As a large electric potential difference is applied across one or more layers of the laminate, it
is assumed that the electric field owing to the variation in stress is insignificant compared
with the applied electric field. In equation (11) the electric field vector {E} is related to
electric potential @ by:

Ej=2; (12)

Also [Q]® and [€1%) denote the transformed reduced plane-stress stiffness matrix and the
matrix of transformed piezoelectric moduli of the kth lamina, respectively. Upon substitution
of equations (2) into equation (11) and the subsequent results into equations (8), the stress
resultants are obtained which can be presented as follows:
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Here, Ajj, Bjj, and Dj denote the extensional stiffnesses, the bending-extensional coupling
stiffnesses, and the bending stiffnesses, respectively [15]. Also k* (=5/6) is the shear
correction factor of FSDT and {N"}, {M"} and {QP} are the electric stress resultants:
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Upon substitution of equations (2) into (13) and the subsequent results into equations (5) and
(6), the generalized stress resultants are obtained which can be represented as follows:
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and the stiffness coefficients Al , Bl , Al and B! are defined by:
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It must be noted that the sign ® used in equations (18) and (19) is referred to array
multiplication of two matrices.

2.4- Governing equations of equilibrium

The equilibrium equations (3) and (4) can be expressed in terms of displacements by
substituting the generalized stress resultants from (15) and (16). Hence, two sets of ordinary
differential equations will be obtained as follows:
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3. THE SOLUTION PROCEDURE

Here, we employ the state-space approach [17] to solve the equilibrium equations obtained in
the previous section. The linear system of second-order ordinary differential equations (22)
can be expressed in the form of single, first-order, matrix differential equation:

{X}=[CKX}+{F} (24)
where the state vector {X} is defined as:
Kad={ui} X=4 ;3 Xad={u;} X 3=4} Xs}={yj} Xe}=1{¢;}.
Kad={y;} Xe}={gj} Xo}=wj} {Xyo}={w;}
In order to solve equation (24), we assume that t,(y), T(y),..., W/(y) are chosen so that the

boundary conditions at y=0,b are identically satisfied. Next, the coefficients Al and Bl are

found from equations (18). Since these coefficients are constant, the general solution of
equation (24) is given by [18]:

{X}=[V][QHK}+ [U][Q]J‘X [QI VT {F}dx (26)

(25)

where [U] is the matrix of distinct eigenvectors of matrix [C] and {K} is a vector of unknown
constants to be found by imposing the boundary conditions at edges x=0,a. Also, the diagonal
matrix [Q] is defined as:

[Q]=diag (™" e ,...,e" ") (27)

where 4 (k =1,2,...,10n) are the eigenvalues associated with matrix [C].



Next, we can substitute the general solution of u, (y), u/(y),..., w{(y) into equations (20) to

find A, and B! which, here, will be constant. The solution procedure for equations (23) is
analogous to the one presented for equations (22) and therefore, for the sake of brevity will
not be taken up here. Solving the coupled systems of ordinary differential equations will be
continued until the solution is converged.

4. RESULTS AND DISCUSSION

In this section, to demonstrate the accuracy and validity of the present method an
antisymmetric angle-ply square laminate [p/-45°/30°/45°/-45°/-30°/45°/p] with width-to-
thickness ratio b/h=20 will be studied. It is made up of six layers of S-glass/epoxy (passive)
and two piezoelectric (active) layers of PZT-4 bonded to the top and bottom surfaces of the
passive layers (the material properties of S-glass/epoxy [19] and PZT-4 [20] in the principal
material coordinate system are listed in table 1). The passive layers of the hybrid laminate
have equal thicknesses while the thicknesses of the active layers are half of each passive
layer. A uniform electric potential @ =, is applied to the upper and lower surfaces of the

plate, with the other surfaces of piezoelectric layers grounded.

Property Ei(GPa) E; G G2 Ga1 V12 ear (cm?)  esp €24

S-glass/epoxy 55 16 7.6 7.6 7.6 0.28 - - -
PZT-4 81.3 813 306 256 256 0.329 -5.2 5.2 1272

Table 1 : The material properties of S-glass/epoxy [19] and PZT-4 [20].

To show the boundary conditions on the four edges of the plate a 4-word notation such as
SFSC is employed, in which "S" denotes simply supported, "C" clamped, and "F" free
boundary conditions. The 1-4th word indicates the boundary conditions on edges x=0, y=0,
x=a, and y=b respectively. It is to be noted that the simply supported boundary conditions at
the edges of the laminate are defined as:

u=w=¢=N,=M;=0 at x=0,a (28a)
Vi:Wi:y/izNiXy:Mi,zo at y=0,a (28b)

In the numerical results the non-dimensionalized variables are deflection w=wE, /(e,®,), in-
plane stresses  (5,,5,,5,) = (0,,0,,0,)b/(e®,)x10, and transverse shear stresses

(G4, 0x) = (04,0 )b/ (e,@, ) . Here, E, denotes the Young's modulus of the piezoelectric layer.

The present numerical results will be compared with those obtained from levy-type solutions.
As a benchmark, a Levy-type solution based on FSDT is developed for the analysis of
piezoelectric laminated plates. It is well known that Levy’s solution exists only for cross-ply
and antisymmetric angle-ply laminates with two opposite edges simply supported.

The variation of deflection at (x/a,b/2) corresponding to three sets of SCSC, SFSC, and SSSF
boundary conditions presented in figure 2, shows an excellent agreement between the present
results and those obtained by Levy’s solution. In order to demonstrate the capability of the
method to analyze conditions for which there exist no Levy-type solutions, deflection of
CCCS plate is also depicted in figure 2. As it is expected, the curve corresponding to
boundary conditions CCCS is located above the other curves.

Figures 3-5 illustrate, respectively, the through-thickness distributions of normal stress
o,(@/2b/2,z/h) and transverse shear stresses g,,(a/4b/4,z/h) and &, (a/4b/4,z/h) for



different sets of boundary conditions (the numerical values of interlaminar stresses are
obtained by integrating the local equilibrium equations of elasticity).
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transverse shear stress ,, (a/4,b/4,z /h). transverse shear stress 5, (a/4,b/4,z /h).

Again, it can be seen that there are close agreements between the results obtained by the two
methods. However, it can be said that the magnitude of errors depends on the type of
boundary conditions imposed on the edges of the plate.

Table 2 attempts to show the influence of the value of n (the total number of summed terms in
equation (1)) on the preciseness of the numerical results obtained from the present method.
The numerical values of deflection W and stress &,, listed in table 2 have been obtained for

the described laminated plate under SFSF boundary conditions.

n 1 2 3 4 5 Levy’s solution
w(a/2,b/2) -4.1228 -4.1393 -4.1435 -4.1441 -4.1441 -4.1441
Oy (@l4,b/4,0)  -6.1662 -9.2579 -8.4799 -8.1129 -8.0304 -8.0826

Table 2 : Non-dimensionalized deflection and transverse shear stress versus n.



Table 2 indicates that as the number n is increased, the accuracy of the results is also
increased. However, it is observed that the rate of convergence of stress to the result of Levy-
type solution is slower compared with that of deflection. It is to be noted that all the numerical
results in this study have been achieved with n=5.

5. CONCLUSIONS

In this work, an analytical method based on the FSDT is proposed for bending analysis of
piezoelectric laminated plates subjected to arbitrary boundary conditions at the edges. The
numerical results are obtained for an antisymmetric angle-ply piezoelectric laminate and
compared with those obtained from Levy’s solution. It is found that the theory can predict
accurately displacements and stresses of the piezoelectric laminated plates. Also a
convergence study is performed to determine suitable number of summed terms in the
displacement field. Numerical results clearly indicate that by using five terms accurate results
are obtained for the deflection and stresses.
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