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ABSTRACT 
This paper deals with analytical solution of piezoelectric laminated composite plates with arbitrary lamination 
and boundary conditions subjected to electromechanical loadings. A new first-order shear deformation plate 
theory is developed based on separation of spatial variables of displacement field components. Two systems of 
coupled ordinary differential equations with constant coefficients are obtained by using the principle of 
minimum total potential energy. The obtained equations are solved analytically with the aid of the state-space 
approach. The results obtained from this theory are compared with the Levy-type solutions of antisymmetric 
angle-ply laminates with various admissible boundary conditions to verify the validity and accuracy of the 
present theory. It is seen that the present results have excellent agreements with those obtained by Levy-type 
method. Since the procedure used is simple and straightforward, it can readily be adopted in developing higher-
order shear deformation and layerwise laminated plate and shell theories. 

 
1. INTRODUCTION 
Since about two decades ago, several papers have been devoted to the theoretical study of 
piezoelectric laminated plates and beams. Crawley and de Luis [ 1] studied the electroelastical 
properties of a piezoelectric/elastic laminated beam with its extension mechanism. Lee and 
Moon [ 2] and Lee [ 3] used Kirchhoff plate theory to develop a simple theory for laminated 
plates with distributed piezoelectric layers. Wang and Rogers [ 4] developed analytical 
solutions based on the classical laminate plate theory (CLPT) for plates with surface-bonded 
or embedded piezoelectric layers. Jonnalagadda et al. [ 5] employed first-order shear 
deformation theory (FSDT) to solve the piezothermoelastic response of hybrid plates. 
Mitchell and Reddy [ 6] used higher-order shear deformation theory (HSDT) based on single-
layer theory for mechanical displacement of rectangular hybrid laminates. A coupled, FSDT 
for multilayered piezoelectric plates was proposed by Huang and Wu [ 7]. Kapuria et al. [ 8] 
presented a Levy-type solution for the bending of cross-ply, hybrid, plates using a mixed 
formulation of FSDT and CLPT. Zhang and Sun [ 9] utilized the variation principle to derive 
the governing equations of sandwich plates containing a piezoelectric core using the shear 
mode of piezoelectric materials. Vel and Batra [ 10- 12] provided the analytical solutions to 
study the generalized plane strain deformations of piezoelectric laminated plates subjected to 
arbitrary boundary conditions via Eshelby–Stroh formalism. By the use of the trigonometric 
series, Zhang et al. [ 13] obtained exact solutions of thermoelectroelastic laminates with 
simply supported boundaries. Recently, Cheng et al. [ 14] obtained governing equations for 
the anisotropic piezoelectric laminated plate, based on Hamilton's principle and assumption of 
Reddy's simple high-order theory. 
The purpose of the present study is to develop an analytical method for bending analysis of 
piezoelectric laminated plates with arbitrary lamination and boundary conditions. As the 
numerical result, an anisymmetric angle-ply hybrid plate under various sets of boundary 
conditions is examined. The comparison of the results with those obtained from the Levy-type 
solution shows an excellent agreement. The approach adopted in the present work will be 
demonstrated within the framework of a FSDT. However, the idea is straightforward and 
general and can readily be used in developing higher-order shear deformation and layerwise 
laminated plate and shell theories. 



2. FORMULATION OF THE PROBLEM 
2.1- Strain field 
Figure 1 shows an undeformed plate of uniform thickness h in a Cartesian coordinate system 
(x,y,z), where the midplane of the plate coincides with z = 0. The plate has a width b in the 
lateral (y-) direction, and length a in the longitudinal (x-) direction. It is composed of arbitrary 
N orthotropic layers which some of them can be piezoelectric. Here, the theory will be 
developed within the framework of the FSDT [ 15]. To this end, it is assumed that the 
components of the displacement field of the plate may be presented as: 
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where, for the sake of brevity, the Einstein summation convention has been introduced – a 
repeated index indicates summation over all values of that index. In equations (1) u(x,y,z), 
v(x,y,z) and w(x,y,z) are, respectively, the displacements in x, y, and z directions, and ( )iu x , 

( )iu y , ( )iv x , ( )iv y , ( )i xψ , ( )i yψ , ( )i xφ , ( )i yφ , ( )iw x , and ( )iw y  are unknown functions. 
Also n is the total number of terms considered in the summation. 
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Figure 1 : The plate geometry and coordinate system. 
 
Substitution of the displacement field (1) into the linear strain-displacement relations of 
elasticity yields a new form of strain-displacement relations as below: 
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2.2- Equilibrium equations 
Next, using the principle of minimum total potential energy [ 16], equilibrium equations and 
boundary conditions corresponding to the independent variables can be shown to be: 
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In the above equations the generalized stress resultants, )(xqi , and  )(yqi  are defined as: 
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In addition, the stress resultants are: 
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The primary and secondary variables of the theory are: 
For edges parallel to y-axis (i.e., x=0,a); 

Primary variables: iu , iv , iψ , iφ , iw  
Secondary variables: i

xN , 2
i
xyN , i

xM , i
2xyM , i

2xQ  i=1,2,…,n                     (9)

For edges parallel to x-axis (i.e., y=0,b); 

Primary variables: iu , iv , iψ , iφ , iw  
Secondary variables: i

1xyN , i
yN , i

1xyM , i
yM , i

2yQ  
i=1,2,…,n                         (10)

 
2.3- Laminate constitutive relations 
The linear constitutive relations for the kth lamina of the hybrid laminate are given by [ 15]: 

( ) ( ) ( ) ( ) ( ){ } [ ] { } [ ] { }k k k k kQ e Eσ ε= −                                                                    (11)

As a large electric potential difference is applied across one or more layers of the laminate, it 
is assumed that the electric field owing to the variation in stress is insignificant compared 
with the applied electric field. In equation (11) the electric field vector {E} is related to 
electric potential Φ  by: 

jjE ,Φ=   (12)

Also ( )[ ] kQ  and ( )[ ] ke  denote the transformed reduced plane-stress stiffness matrix and the 
matrix of transformed piezoelectric moduli of the kth lamina, respectively. Upon substitution 
of equations (2) into equation (11) and the subsequent results into equations (8), the stress 
resultants are obtained which can be presented as follows: 
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Here, Aij, Bij, and Dij denote the extensional stiffnesses, the bending-extensional coupling 
stiffnesses, and the bending stiffnesses, respectively [ 15]. Also k2 (=5/6) is the shear 
correction factor of FSDT and {NP}, {MP} and }{ PQ  are the electric stress resultants: 
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Upon substitution of equations (2) into (13) and the subsequent results into equations (5) and 
(6), the generalized stress resultants are obtained which can be represented as follows: 
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where 
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It must be noted that the sign ⊗ used in equations (18) and (19) is referred to array 
multiplication of two matrices. 
 
2.4- Governing equations of equilibrium 
The equilibrium equations (3) and (4) can be expressed in terms of displacements by 
substituting the generalized stress resultants from (15) and (16). Hence, two sets of ordinary 
differential equations will be obtained as follows: 
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3. THE SOLUTION PROCEDURE 
Here, we employ the state-space approach [ 17] to solve the equilibrium equations obtained in 
the previous section. The linear system of second-order ordinary differential equations (22) 
can be expressed in the form of single, first-order, matrix differential equation: 
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In order to solve equation (24), we assume that )(yui , )(yui′ ,…, )(ywi′  are chosen so that the 
boundary conditions at  y=0,b are identically satisfied. Next, the coefficients ij

mnA  and ij
mnB  are 

found from equations (18). Since these coefficients are constant, the general solution of 
equation (24) is given by [ 18]: 
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where [U] is the matrix of  distinct eigenvectors of matrix [C] and {K} is a vector of unknown 
constants to be found by imposing the boundary conditions at edges x=0,a. Also, the diagonal 
matrix [Q] is defined as: 

101 2[ ] ( , , , )n xx xQ diag e e e λλ λ= …                        (27)

where ( 1,2, ,10 )k k nλ = …  are the eigenvalues associated with matrix [C].  



Next, we can substitute the general solution of ( )iu y , ( )iu y′ ,…, ( )iw y′  into equations (20) to 
find ij

mnA  and ij
mnB  which, here, will be constant. The solution procedure for equations (23) is 

analogous to the one presented for equations (22) and therefore, for the sake of brevity will 
not be taken up here. Solving the coupled systems of ordinary differential equations will be 
continued until the solution is converged. 
 
4. RESULTS AND DISCUSSION 
In this section, to demonstrate the accuracy and validity of the present method an 
antisymmetric angle-ply square laminate [p/-45°/30°/45°/-45°/-30°/45°/p] with width-to-
thickness ratio b/h=20 will be studied. It is made up of six layers of S-glass/epoxy (passive) 
and two piezoelectric (active) layers of PZT-4 bonded to the top and bottom surfaces of the 
passive layers (the material properties of S-glass/epoxy [ 19] and PZT-4 [ 20] in the principal 
material coordinate system are listed in table 1). The passive layers of the hybrid laminate 
have equal thicknesses while the thicknesses of the active layers are half of each passive 
layer. A uniform electric potential 0ΦΦ =  is applied to the upper and lower surfaces of the 
plate, with the other surfaces of piezoelectric layers grounded. 

Property E1 (GPa) E2 G12 G23 G31 υ12 e31 (cm-2) e32 e24 

S-glass/epoxy 55 16 7.6 7.6 7.6 0.28 - - - 
PZT-4 81.3 81.3 30.6 25.6 25.6 0.329 -5.2 -5.2 12.72

Table 1 : The material properties of S-glass/epoxy [ 19] and PZT-4 [ 20]. 
 
To show the boundary conditions on the four edges of the plate a 4-word notation such as 
SFSC is employed, in which "S" denotes simply supported, "C" clamped, and "F" free 
boundary conditions. The 1-4th word indicates the boundary conditions on edges x=0, y=0, 
x=a, and y=b respectively. It is to be noted that the simply supported boundary conditions at 
the edges of the laminate are defined as: 

0===== i
x

i
xyiii MNwu φ    at   x=0,a  (28a)

0===== i
y

i
xyiii MNwv ψ    at   y=0,a  (28b)

In the numerical results the non-dimensionalized variables are deflection ( )32 0pw wE e Φ= , in-
plane stresses ( ) 2

32 0( , , ) ( , , ) 10x y xy x y xy b eσ σ σ σ σ σ Φ −= × , and transverse shear stresses 
( )32 0( , ) ( , )xz xz xz xz b eσ σ σ σ Φ= . Here, Ep denotes the Young's modulus of the piezoelectric layer.  

The present numerical results will be compared with those obtained from levy-type solutions. 
As a benchmark, a Levy-type solution based on FSDT is developed for the analysis of 
piezoelectric laminated plates. It is well known that Levy’s solution exists only for cross-ply 
and antisymmetric angle-ply laminates with two opposite edges simply supported. 
The variation of deflection at (x/a,b/2) corresponding to three sets of SCSC, SFSC, and SSSF 
boundary conditions presented in figure 2, shows an excellent agreement between the present 
results and those obtained by Levy’s solution. In order to demonstrate the capability of the 
method to analyze conditions for which there exist no Levy-type solutions, deflection of 
CCCS plate is also depicted in figure 2. As it is expected, the curve corresponding to 
boundary conditions CCCS is located above the other curves. 
Figures 3-5 illustrate, respectively, the through-thickness distributions of normal stress 

( / 2, / 2, / )x a b z hσ  and transverse shear stresses ( / 4, / 4, / )xz a b z hσ  and ( / 4, / 4, / )yz a b z hσ  for 



different sets of boundary conditions (the numerical values of interlaminar stresses are 
obtained by integrating the local equilibrium equations of elasticity).  
 

x/a

⎯w
(x

/a
,b

/2
)

-0.4 -0.2 0 0.2 0.4

-3

-2.5

-2

-1.5

-1

-0.5

0

SCSC, Present
SCSC, Levy
SFSC, Present
SFSC, Levy
SSSF, Present
SSSF, Levy
CCCS, Present

 ⎯σx(a/2,b/2,z/h)
z/

h

-1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

SFSF, Present
SFSF, Levy
SSSC, Present
SSSC, Levy

Figure 2 : Variations of deflection versus x/a. Figure 3 : Through-thickness distributions of 
normal stress ( / 2, / 2, / )x a b z hσ . 
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Figure 4 : Through-thickness distributions of 
transverse shear stress ( / 4, / 4, / )xz a b z hσ . 

Figure 5 : Through-thickness distributions of 
transverse shear stress ( / 4, / 4, / )yz a b z hσ . 

 
Again, it can be seen that there are close agreements between the results obtained by the two 
methods. However, it can be said that the magnitude of errors depends on the type of 
boundary conditions imposed on the edges of the plate. 
Table 2 attempts to show the influence of the value of n (the total number of summed terms in 
equation (1)) on the preciseness of the numerical results obtained from the present method. 
The numerical values of deflection w  and stress xzσ  listed in table 2 have been obtained for 
the described laminated plate under SFSF boundary conditions.   

n 1 2 3 4 5 Levy’s solution

( / 2, / 2)w a b  -4.1228  -4.1393 -4.1435 -4.1441 -4.1441 -4.1441 
( / 4, / 4,0)xz a bσ  -6.1662 -9.2579 -8.4799 -8.1129 -8.0304 -8.0826 

Table 2 : Non-dimensionalized deflection and transverse shear stress versus n.   



Table 2 indicates that as the number n is increased, the accuracy of the results is also 
increased. However, it is observed that the rate of convergence of stress to the result of Levy-
type solution is slower compared with that of deflection. It is to be noted that all the numerical 
results in this study have been achieved with n = 5. 
 
5. CONCLUSIONS 
In this work, an analytical method based on the FSDT is proposed for bending analysis of 
piezoelectric laminated plates subjected to arbitrary boundary conditions at the edges. The 
numerical results are obtained for an antisymmetric angle-ply piezoelectric laminate and 
compared with those obtained from Levy’s solution. It is found that the theory can predict 
accurately displacements and stresses of the piezoelectric laminated plates. Also a 
convergence study is performed to determine suitable number of summed terms in the 
displacement field. Numerical results clearly indicate that by using five terms accurate results 
are obtained for the deflection and stresses. 
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