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ABSTRACT 

Theoretical formulation based on the first-order shear deformation shell theory (FSDST) is presented for 

the analysis of functionally graded (FG) cylindrical shells subjected to axisymmetric thermomechanical 

loadings. Also a cylinder made up of a FG layer at the mid-depth and two equal-thickness ceramic and 

metal layers at the inner and outer surfaces of the cylinder, respectively, is analyzed. The axisymmetric 

heat transfer equation and the governing equilibrium equations are solved analytically. To check the 

correctness and accuracy of the present method, the results achieved from this theory are compared with 

those obtained by utilizing a commercial finite element package. The results show that there are close 

agreements between the present solutions and those obtained from the finite element method. Finally, the 

effect of the imposed thermomechanical loading on the response of the FG cylindrical shell is discussed. 

 

1. INTRODUCTION 

In conventional laminated composite material, there is a high chance that debonding 

will occur at some extreme loading conditions. On the other hand, gradually varying the 

volume fraction of the constituents rather than abruptly changing them over an interface 

can resolve this problem. Functionally graded materials (FGMs) are composite 

materials which exhibit a progressive change in composition, structure, and properties 

as a function of spatial direction within the material. This is achieved by gradually 

varying the volume fraction of the constituent materials. By spatially varying the 

microstructure, the material can be tailored for a particular application to yield optimal 

thermal and mechanical behavior. To this end, in recent years, these types of advanced 

materials are gradually being used in many engineering applications. Thin-walled 

members, which are used in reactor vessels, turbines, and other machine parts, are some 

applications of FGMs in thermomechanical loading conditions. 

Many studies for thermoelastic analysis of FGM plates and shells are available in 

literatures. Reddy and Chin [1] considered thermoelastic analysis, including the 

coupling effect, for FGM plates and cylinders. Obata and Noda [2] studied the thermal 

stresses in a FGM hollow sphere and in a hollow circular cylinder. Praveen et al. [3] 

used the finite element formulation of axisymmetric heat transfer equation to analyze a 

FG ceramic-metal cylinder. Using the Frobenius series method, Zimmerman and Lutz 

[4] investigated circular cylinders subjected to a uniform heating. Liew et al. [5] 

analyzed the thermomechanical behavior of hollow circular cylinders of FGM by using 

a limiting process that employs the solutions of homogeneous hollow circular cylinders, 

with no recourse to the basic theory or the equations of non-homogeneous 

thermoelasticity. Tarn [6], using state space method, analyzed the temperature fields and 

stress fields of a FGM cylindrical shell with the material constants being a particular 

power function of the radial variable. 

Tutuncu and Ozturk [7] obtained closed-form solutions for stresses and displacement in 

FG cylindrical and spherical vessels subjected to internal pressure alone using the 

infinitesimal theory of elasticity. 



In this study, based on the first-order shear deformation shell theory, functionally 

graded cylindrical shells subjected to thermomechanical loadings are analyzed. It is 

assumed that the loadings are axisymmetric. Various loading and boundary conditions 

are considered and also FG cylinders are compared with cylindrical shells made up of a 

FG layer at the mid-depth and two equal-thickness ceramic and metal layers at the inner 

and outer surfaces of the shells, respectively. To check the correctness and accuracy of 

the present method, the present results are compared with those obtained by utilizing the 

finite element method. 

 

2. THEORETICAL FORMULATION 

Consider a FG cylindrical shell of length L, total thickness h, and radius R, which is 

made from a mixture of ceramics and metals (see figure 1). It is assumed that the 

material is isotropic, and the grading is assumed to be only through the thickness. It is 

further assumed that the cylindrical shell is subjected to an axisymmetric internal 

pressure or an axisymmetric thermal loading. The deformations, defined with reference 

to a coordinate system (x,y,z), taken at the middle surface, are u, v, and w in the x, y (or 

 ), and z directions, respectively. 
 

 
Figure 1 : Geometry and coordinate system of a cylindrical shell. 

 

2.1- Displacement field and strains 

Here the cylindrical shell will be studied within the framework of the first-order shear 

deformation shell theory. The displacement field of the cylinder in axisymmetric 

loading conditions is independent of coordinate y and, therefore, may be represented as: 

0( , , ) ( ) ( )xu x y z u x z x  ,   0( , , ) ( ) ( )yv x y z v x z x   

( , , ) ( )w x y z w x  
(1) 

where 0u , 0v , and w denote the displacements of a point on the middle surface of the 

cylinder (z=0). Also x  and y  are the rotation functions of the transverse normals on 

the plane z=0. The linear strain-displacement relations of elasticity in cylindrical 

coordinates are given by [8]:  
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(2) 

Upon substitution of equations (1) into equations (2) and by assuming Love’s shell theory 

[9] (i.e., 1 1z R  ) the following results will be obtained: 
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2.2- Constitutive relations 

Here we assume that the material property gradation is through the thickness of the 

shell. For a shell with a uniform thickness h and a reference surface at its middle 

surface, the volume fraction can be written as the following power-law expression: 
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where n ( 0 n  ) is a parameter that dictate the material variation profile through the 

thickness. For a functionally graded solid with two constituent materials, the variation 

of material properties can be expressed as: 

 ( ) i o f op z p p V p    (5) 

where p denotes a generic material property like modulus, op  and ip  denote the 

property of the outer and inner surfaces of the cylinder, respectively. Here we assume 

that moduli E and G, coefficient of thermal expansion  , and thermal conductivity k 

vary according to equation (5) and the Poisson's ratio   is assumed to be a constant.  

The linear constitutive relations are: 
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and T  is the temperature change from a stress-free state that will be obtained by 

solving the one-dimensional heat transfer equation.  

 

2.3- Equations of equilibrium 

Using the principle of minimum total potential energy [8], the equilibrium equations can 

be shown to be: 
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where zP  is the internal pressure applied to the cylinder. In equations (8) the force and 

moment resultants are defined as: 
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The boundary conditions consist of specifying 
0u  or xN , 

0v  or xyN , w  or 
xQ , 

x  or 
xM , 

and y  or xyM  at x=0 and x=L. Upon substitution of equations (6) into equations (9), 

the force and moment resultants in terms of displacement components will be obtained 

which can be presented as follows: 
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and  2
5 / 6k   is the shear correction factor. The thermal resultants in equations (10) 

are defined as: 
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Lastly, the governing equations of equilibrium are obtained by substituting equations 

(10) into equations (8): 
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The above equations are five coupled second-order ordinary differential equations with 

constant coefficients that can be solved for any arbitrary boundary conditions. For the 

sake of brevity, the solution procedure of these equations will not be taken up here. 

In order to solve equations (13) in thermal loadings the temperature field should be 

known. It is assumed that one value of temperature is imposed on the inner surface and 

the other value on the outer surface of the cylinder. In this case, the temperature 

distribution through the thickness can be obtained by solving a simple steady state heat 

transfer equation through the thickness of the cylinder. This equation is given by: 
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and the boundary conditions are T=To at z=-h/2 and T=Ti at z=h/2. It is readily seen that 

the solution to equation (14) is: 
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with ( )n

o o ik k k   . It is to be noted that the integral of ( )nA   (see equations (16)) 

has analytical solution for n=0.2, n=0.5, and all integer values. For other values of n, 

this integral must be solved numerically.  

 

3. NUMERICAL RESULTS 

Here we present some representative results for a FG cylindrical shell of thickness 

h=1cm, radius R=50h, and length L=2R. The cylinder is assumed to be, for example, 

simply supported and subjected to thermomechanical loadings. The boundary conditions 

at x=0, L of the cylinder are 2xN PR  and 0 wMMN xyxxy . It is also 

assumed that the inner surface of the cylinder is rich of ceramic (Zirconia) and the outer 

surface is rich of metal (Aluminum). The thermomechanical properties of Zirconia and 

Aluminum are as follows: 

151GPacE  ,  0.3c  ,  
6 o10 10 / Cc
  ,   2.09 W mKck   

70GPamE  ,  0.3m  ,  
6 o23 10 / Cm

  ,   204 W mKmk   
(17) 

Figure 2 shows the distribution of the volume fraction Vf of the ceramic phase through 

the cylinder thickness for various values of the power-law index n. 

In what follows, several numerical examples are presented for a cylinder subjected to a 

uniform internal pressure or a steady state temperature field. 
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Figure 2 : Variation of the volume fraction Vf of the ceramic phase through the thickness 

of the FG cylindrical shell. 

 

3.1- Mechanical loading 

Consider a cylindrical shell subjected to a uniform internal pressure. In this case, results 

are presented in terms of non-dimensional variables length /x x L , thickness /z z h , 

deflection /w w R , and in-plane stresses    , , /x y x y p    . The particular problem, 

which shows the validity and accuracy of the present results, is a FG cylindrical shell 

with n=1 subjected to a uniform internal pressure of Pz=1MPa. Here the present results 

are compared with those obtained by utilizing the finite element package of ANSYS. 

Figures 3a and 3b show the distributions of non-dimensionalized radial displacement w , 

longitudinal stress x ,  and circumferential stress y  along the length of the cylinder. It 

is seen that there is a good agreement between the present results and those obtained 

from finite element method. 
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Figure 3 : Distributions of (a) deflection w  and (b) stresses x  and y  versus x  of the 

FG cylindrical shell (n=1) due to internal pressure of Pz=1 MPa. 
 

The variations of x  and y  along the length of the FG cylindrical shell for various 

values of the power-law index n are shown in figures 4a and 4b, respectively. It is found 

that these stresses are minimum for n=0.2 and maximum for the cylinders made up of 

Zirconia or Aluminum.  

x




x

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

n=0.2

Zirconia

Aluminum

n=2
n=1

n=0.5

 
(a) 

x




y

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

n=0.2

Zirconia

n=0.5

n=1

n=2

n=5

Aluminum

 
(b) 

Figure 4 : Distributions of (a) longitudinal stress x  and (b) circumferential stress y  

versus x  at the outer surface of the FG cylindrical shell due to the internal pressure Pz . 
 

Also we consider a shell made up of a FG layer at the mid-depth and two equal-

thickness ceramic (Zirconia) and metal (Aluminum) layers at the inner and outer 

surfaces of the shell, respectively (see figure 5). 

 

 
Figure 5 : Thickness of a cylinder made up of a FG layer at the mid-depth and two 

equal-thickness ceramic and metal layers at the inner and outer surfaces, respectively. 

 

Figures 6a and 6b show distributions of non-dimensionalized stresses x  and y  



through the thickness of the FG cylindrical shell and also through the thickness of a 

conventional laminated Aluminum-Zirconia cylindrical shell. It is seen that in the 

absence of FGM layer, the stress distributions are discontinuous. It is also observed that 

by using a FGM layer with n<1, we can reduce magnitude of the axial and 

circumferential stresses. 
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Figure 6 : Distributions of (a) longitudinal stress x  and (b) circumferential stress y  

through the thickness of the FG cylindrical shell and the two-layer laminated cylinder at 

x=L/2 due to the internal pressure Pz . 

 

3.2- Thermal loading 

The FG cylindrical shell is studied under a thermal gradient through its thickness 

direction. The temperature of the inner ceramic-rich surface is fixed at Ti=300
o
C and 

that of the outer metal-rich surface is kept constant at To=20
o
C. It is assumed that the 

reference stress-free temperature 0
o
C. The temperature field through the thickness of the 

cylinder can be easily obtained from equation (15). For the thermal loading, the in-plane 

stresses are non-dimensiuonalized as      , 10 , /x y x y m m cE T     . 

Figure 7 shows the variation of the temperature through the thickness of the cylindrical 

shell for various values of the power-law index n. 
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Figure 7 : Temperature profile through the thickness of the FG cylindrical shell. 

 

The distributions of the thermal stresses x  and y  along the length at the outer surface 

of the FG cylindrical shell for various values of the power-law index n are shown in 

figures 8a and 8b, respectively. It is observed that these stresses are minimum for n=0.2 

and maximum for cylinders made of Zirconia or Aluminum. 
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Figure 8 : Distributions of (a) longitudinal stress x  and (b) circumferential stress y  

versus x  at the outer surface of the FG cylindrical shell due to the thermal loading. 

 

4. CONCLUSIONS 

Within the displacement field of a first-order shear deformation shell theory, 

functionally graded cylindrical shells subjected to axisymmetric thermomechanical 

loadings are analyzed. Also a bi-material shell made up of a FG layer at the mid-depth 

and two equal-thickness ceramic and metal layers is analyzed. The effective properties 

at a point in the shell are assumed to vary according to a power-law distribution in terms 

of the volume fractions of the constituents. The axisymmetric heat transfer equation and 

the governing equilibrium equations are solved analytically. The results achieved from 

this theory are compared with those obtained by utilizing a finite element package. It is 

found that there are good agreements between the present solutions and those obtained 

from the finite element method. It is observed that compared to the classical layered 

composites, FGMs exhibit considerable improvement in the temperature and thermal-

stress distributions. This is due primarily to the enforcement of continuity in material 

properties through the thickness. The present results give us an idea about the type of 

distribution one should choose in order to control the magnitude of the stresses.  
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