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            Abstract 
An analytical method is devlopteded to analyze piezoelectric hybrid laminated composite plates with 
arbitrary lamination and boundary conditions subjected to electromechanical loads. The method is based 
on separation of spatial variables of displacement field components. Within the displacement field of a 
first-order shear deformation plate theory and using the principle of minimum total potential energy, two 
systems of coupled ordinary differential equations with constant coefficients are obtained. These 
equations may be solved analytically with the help of state-space approach. Also a Levy-type solution is 
employed for verification the validity and accuracy of the proposed method. It is seen that the present 
results have close agreements with those obtained by Levy-type method.  
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Introduction  
Hybrid composite plates consisting of fiber-
reinforced and piezoelectric layers are important 
components of smart or intelligent structures2([1]-
[3]). For the analytical solution of laminated 
composite plates, Pagano  [4] firstly presented the 
exact solution of  the laminated plate with simply 
supppted edges. Ray et al. [5,6] and Brooks and 
Heyliger  [7] extended this methodology to develop a 
three-dimensional, exact, plane strain piezoelastic 
solution for simply supported single-layer and 
laminated piezoelectric plates with distributed and 
patched actuators. Three-dimensional, exact 
piezoelastic solutions for simply supported 
rectangular plates coupled to distributed sensors and 
actuators have been presented by Ray et al.  [8], 
Heyliger [9,10] and Lee and Jiang  [11]. Tauchert 
 [12] applied the classical lamination theory (CLT) to 
obtain an analytical solution for a smart composite 
plate. Jonnalagadda et al.  [13] employed first-order 
shear deformation theory (FSDT) to solve the 
piezothermoelastic response of hybrid plates with a 
known thermoelectric field. They presented a 
                                                           
1-Assistant professor  
2- M.S. student  

Navier-type solution for rectangular plates with all 
edges simply supported, and a finite element 
solution by using nine-noded Lagrangian elements, 
for plates with various edge support conditions. 
Huang and wu  [14] have given a coupled, first-order 
shear deformation theory for the piezoelectric 
response of hybrid plates and a post-processing 
technique to obtain the accurate response of 
transverse stresses, transverse displacement, electric 
potential and electric displacement. A Levy-type 
solution for the bending of cross-ply, hybrid, 
rectangular plates with two opposite edges simply 
supported by using a mixed formulation of first-
order shear deformation and classical lamination 
theories was presented by Kapuria et al.  [15]. Senthil 
and Batra  [16] provided the analytical solutions of 
piezoelectric laminated plates via Eshelby–Stroh 
formalism. 
It can be seen most of avaiable analytical solution 
techniques for deformation of piezoelectric plates 
are restricted to whose edges are simply supported. 
Here, a new analytical method is developed to 
analyze laminated composite plates with arbitrary 
lamination and boundary conditions subjected to 
mechanical and electrical loads. Using the principle 
of minimum total potential energy and first-order 
shear deformation theory simultaneously, two 
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systems of coupled ordinary differential equations 
with constant coefficients are obtained. The obtained 
equations are solved analytically using the state-
space approach. In ordrer to verify the accuracy of 
the present theory a Levy-type solution for 
rectangular piezoelectric laminated plates with 
cross-ply and antisymmetric angle-ply laminations 
and two opposite edges simply supported using first-
order shear deformation theory is employed. The 
comparison shows excellent agreement between the 
results. 
 
Theory and formulation 
 Fig. 1 shows the geometric characteristics of hybrid 
multilayered plate considered herein, with side 
lengths 2a and 2b and total thickness h. The 
structure consists of arbitrary N orthotropic layers 
which some of them can be piezoelectric, with the 
spatial poling directions and a piezoelectric moduli 
such like exhibiting the crystal of class mm2. 
 
Displacement and strain fields 
Considering a rectangular cartesian coordinate 
system shown in Fig. 1, the displacement field 
components can be written as independent functions 
of  the spatial variables using first-order shear 
deformation (FSDT)  [17] theory as below: 
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where u(x,y,z), v(x,y,z) and w(x,y,z) are respectively 
the displacements in x, y and z directions, and )(xui , 
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)(xwi , and )(ywi  are unknown functions. The 

infinitesimal strain tensor and the electric field 
vector are related to the mechanical displacement 
vector and the electric potential Φ by 
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Substitution of the displacements (1) into Eqs. (2) 
strain-displacement relations yields. 

xxiiiix zzuu κεψψε +=′+′= 0  

yyiiiiy zzvv κεφφε +=′+′= 0  
0
yziiiiyz ww γφφγ =′+=                                                 (4) 
0
xziiiixz ww γψψγ =′+=  

xyxyiiiiiiiixy zzvvuu κγφφψψγ +=′+′+′+′= 0)(  

0=zε  

Equilibrium equations and boundary conditions 
Now, using the principle of minimum total potential 
energy  [18], two sets of equilibrium equations and 
boundary counditions corresponding to the 
independent variables can be shown to be: 
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where the generalized stress resultants, )(xqi  and 
)(yqi  are defined as 
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Also the stress resultants are  
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The boundary conditions consist of specifying the 
following quantities at the edges of the plate. For 
edges parallel to y-axis (i.e. x=±a): 

Geometric (essential)  Force (natural) 
iu  or i

xN  

iv  or   i
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also, for edges parallel to x-axis (i.e. y=±b): 

Geometric (essential)  Force (natural) 
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Laminate constitutive relations 
The linear constitutive relations for the kth 
orthotropic (piezoelectric) lamina in the laminate 
coordinates (x,y,z) are given in Eqs. (14). As a large 
electric potential difference is applied across one or 
more layers of the laminate, it is assumed that the 
electric field owing to the variation in stress (the 
direct piezoelectric effect) is insignificant compared 
with the applied electric field. 
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In the above equations )(k
ijmnQ  denotes the 

transformed reduced plane-stress stiffness matrix 
and )(k

mije  is the transformed piezoelectric moduli of 
the kth lamina. Upon substitution Eqs. (4) into Eqs. 
(14) and the subsequent results into Eqs. (11), the 
stress resultants are obtained which can be presented 
as follow: 
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Here k2 (=5/6) is the shear correction factor of 
FSDT. Also Aij, Bij, and Dij denote the extensional 
stiffnesses, the bending-extensional coupling 
stiffnesses, and the bending stiffnesses, respectively.  
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where N is the total number of layers. In Eqs. (15),  
{NP}, {MP} and }{ PQ  are the electric stress 
resultants 
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where Na is the number of piezoelectric layers. Note 
that for layers other than piezoelectric layers, the 
parts containing piezoelectric moduli should be 
omitted. 
Upon substitution of  Eqs. (4) into (15) and the 
subsequent results into Eqs. (7) and (8) the 
generalized stress resultants are obtained which can 
be represented as follows: 
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where [ ]α  and [ ]β  are 
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It must be noted that the sign ⊗ used in Eqs. (24) and 
(25) is referred to array multiplication of two 
matrices. 
 
Equilibrium equations in terms of displacements 
The equilibrium equations (5) and (6) can be 
expressed in terms of displacements and electrical 
field by substituting the generalized stress resultants 
from (18) and (19). Hence, two sets of ordinary 
differential equations will be obtained as follows: 
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Solution of equations 
Here, we employed the state-space approach  [19] to 
solve the equilibrium equations obtained in the 
previous section. The linear system of ordinary 
differential equations (28) can be expressed in the 

form of single, first-order, matrix differential 
equation 

}{}]{[}{ FXCX +=′                                                  (30) 
where the state vector {X} is defined as 

sym. 
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In order to solve Eq. (30) a solution is assumed 
which satisfies the associated boundary conditions at 
y=±b. In other words, by assuming solutions for 

)(yui , )(yui′ ,…, )(ywi′  the components of  matrix [C] 
and vector {F} can be easily calculated. The general 
soluion of  Eq. (30) is given by  [20]: 

∫ −−+=
x

dxFUQQUKQUX }{][][]][[}]{][[}{ 11               (32) 

where [U] is the matrix of  distinct eigenvectors of 
matrix [C] and {K} is a vector of unknown constants 
to be found by imposing the boundary conditions at 
edges x=±a. Also the diagonal matrix [Q] is defined 
as 

),,,(][ 1021 xxx eeediagQ λλλ K=                               (33) 
where )10,,2,1( K=kkλ  are the eigenvalues  associated 
with matrix [C].       
Using the solutions obtained from the system of 
equations (28) the system of differential equations 
(29) can be solved similarly. This procedure (solving 
the coupled systems of ordinary differential 
equations)  will be continued until the solutions of  
the two systems are converged. 
 
Numerical results and discussion 
In accordance with the theoretical methodology 
developed in the previous sections, two problems 
involving various sets of boundary conditions are 
examined. The hybrid rectangular plates studied in 
these problems are made up of graphite/epoxy 
laminae of equal thickness and piezoelectric layers 
of polyvinylidene fluoride (PVDF). The material 
constants of PVDF  [21] and the graphite/epoxy 
laminae  [13] are listed in Table 1.  
As a benchmark, a Levy-type solution based on 
FSDT is developed. It is well known that a Levy 's 
solution exists only for cross-ply and antisymmetric 
angle-ply laminates with two opposite edges simply 
supported. In example 1 results obtained utilizing 
the present method are compared with those 
obtained by the Levy-type solution for a general 
cross-ply hybrid laminate with admissible boundary 
conditions. Also in example 2 a hybrid laminate with 
other lamination and boundary conditions that there 
exist no Levy-type solutions will be studied. 
Denoting simply supported, clamped and free 
boundary conditions by S, C and F, a 4-word 
notation such as SFSC is employed to show the 
boundary conditions on the four edges of the plate. 
The 1-4th word indicates the boundary conditions on 
edges x=-a, y=-b, x=a and y=b respectively. Two 
types of simple supports are applied at the edge of 
the laminate, which is classified as: 

S1: 
0===== i

x
i
xiii MNwv φ      at  x=±a           (34a) 

0===== i
y

i
yiii MNwu ψ    at  y=±b                (34b) 

S2: 
0===== i

x
i
xyiii MNwu φ     at  x=±a         (35a) 

0===== i
y

i
xyiii MNwv ψ    at  y=±b                (35b) 

It is to be noted that S1 is used for cross-ply 
laminates and S2 is used for antisymmetric angle-ply 
laminates to obtain Levy's solutions. 
 
Example 1:  
First a numerical example is presented for hybrid 
rectangular plate [p/0°/90°/90°/0°], which p denotes 
piezoelectric layer. The plate has length-to-width 
ratio a/b=2 and width-to-thickness ratio 2b/h=10. 
The upper surface of double-thickness piezopolymer 
is subjected to a uniform electric potential 0ΦΦ =  or 

a sinusoidal potential  
b2
y

a2
x ππΦΦ coscos0=  and its 

lower surface is grounded ( 0=Φ ). In addition, it is 
assumed that the variation of electric potential is 
linear through the piezoelectric layer. In the case of 
applied uniform potential, the results achived from 
the present method and the Levy method are 
compared by Figs. 2-4. All the numerical results for 
deflections and stresses shown in what follows are 
nondimensionalized as below: 
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⎛ −
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032Φe
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e

b
xzxzxzxz      

where Ep denotes the Young's moduli of PVDF layer.  
The variation of nondimensionalized deflection  
versus x/2a at y=0 is shown in  Fig. 2 corresponding 
to three sets of CSCS, FSFS and FSCS boundary 
counditions. Also Figs. 3 and 4 illustrate the 
distributions of normal stress )/,0,0( hzyσ  and 
transvers shear stress )/,2/,2/( hzbaxzσ through the 
thickness of described hybrid plate under various 
boundary conditions. It is to be noted that the 
numerical values of interlaminar stresses are 
obtained by integrating the local equilibrium 
equations of elasticity. 
It is seen in the above mentioned figures that there 
are close agreements between the present results and 
those obtained by Levy 's solution. However, it can 
be seen that the magnitude of errors are different 
depending on the type of boundary conditions 
imposed on the edges of  the plate. 
The through-thickness variations of shear stresses  

)/,,( hzbaxyσ  and )/,2/,2/( hzbaxzσ  due to the applied 
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sinusoidal potential are shown in Figs. 5 and 6 
respectively. In this case there is no difference 
between Levy 's solutions.  
 
Example 2:  
To demonstrate the applicability of the proposed 
method to analyze hybrid laminated plates with 
arbitrary lamination and boundary conditions, as the 
second example square hybrid plate [p/45°/90°/-
45°/p] with the aspect ratio 10 is considered. 
Two piezocelectric layers bonded to the top and 
bottom surfaces of the laminate have equal 
thicknesses of h/10. A sinusoidal potential of peak 
amplitude of 0Φ  is applied to the upper and lower 
surfaces of the plate, with the other surfaces of 
piezoelectric layers grounded. 
The variation of deflection at y=0, along the length 
of the plate with four sets of boundary conditions: 
SSSS, CCCC, CFCF and CFSF, is presented in  Fig. 
7. As expected, the curves corresponding to 
boundary conditions CCCC and SSSS are located 
above and below the other curves respectively.  
Figs 8 and 9 depicts the through-thickness 
distributions of normal stress )/,0,0( hzyσ  and 
transvers shear stress )/,2/,2/( hzbayzσ  for different 
sets of boundary conditions. 
 
Conclusion 
A new analytical method is developed to study the 
bending behavior of hybrid piezoelectric laminates. 
In spite the procedure is simple, the proposed 
method has the capability for analyzing hybrid plates 
with arbitrary lamination and boundary conditions.  
Using the Levy-type solution as a benchmark, the 
excellent agreement beween the present results for 
several sets of boundary conditions, especially in the 
case of  applied sinusoidal potential, are found. 
Generally, for the case in which the plate is 
subjected to a uniform electric potential the amount 
of generated error depends on the type of boundary 
conditions imposed on the edges of  the plate. 
It is expected that increasing the number of terms in 
the assumed displcement field, may improves the 
accuracy of the results obtained by the proposed 
method. 
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Table 1. Material properties of graphite/epoxy and 
PVDF 

Property graphite/epoxy PVDF 
E1 (GPa) 181 2.0 

E2  10.3 2.0 
G12 7.17 0.752 
G23  2.87 0.752 
G31  7.17 0.752 
υ12  0.28 0.33 

e31 (Cm-2) - 0.0687 
e32 - 0.0687 

 
 
 
 
 
 

 

Fig. 1. The plate geometry and coordinate system. 
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Fig. 2. Variations of deflection  versus x/2a for a 

hybrid plate [p/0°/90°/90°/0°] subjected to the uniform 
potential. 
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Fig. 3. Variations of normal stress z/h),(σ y 0,0  

through the thickness of a hybrid plate [p/0°/90° 
/90°/0°] subjected to the uniform potential. 
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Fig. 4.  Distributions of transvers shear stress 

z/h),b/,(a/σ xz 22  through the thickness of a hybrid 

plate [p/0°/90°/90°/0°] subjected to the uniform potential. 
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Fig. 5.  Variations  of shear stress z/h),(σ xy ba,  

through the thickness of a hybrid plate [p/0°/90° 
/90°/0°] subjected to the sinusoidal potential. 
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Fig. 6.  Distributions of transvers shear stress 

z/h),b/,(a/σ yz 22  through the thickness of a hybrid plate 

[p/0°/90°/90°/0°] subjected to the sinusoidal potential. 
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Fig. 7.  Variations  of deflection  versus x/2a at y=0 for 

a hybrid plate [p/45°/90°/-45°/p] subjected to the 
sinusoidal potential. 
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Fig. 8.  Variations  of normal stress z/h),(σ y 0,0  

through the thickness of a hybrid plate [p/45°/90° /-
45°/p] subjected to the sinusoidal potential. 
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Fig. 9.  Distributions of transvers shear stress 

2 2xzσ (a/ ,b/ , z/h)  through the thickness of a hybrid 
plate [p/45°/90°/-45°/p] subjected to the sinusoidal 

potential. 
 


