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Abstract

An analytical method is devlopteded to analyze piezoelectric hybrid laminated composite plates with
arbitrary lamination and boundary conditions subjected to electromechanical loads. The method is based
on separation of spatial variables of displacement field components. Within the displacement field of a
first-order shear deformation plate theory and using the principle of minimum total potential energy, two
systems of coupled ordinary differential equations with constant coefficients are obtained. These
equations may be solved analytically with the help of state-space approach. Also a Levy-type solution is
employed for verification the validity and accuracy of the proposed method. It is seen that the present
results have close agreements with those obtained by Levy-type method.
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Introduction

Hybrid composite plates consisting of fiber-
reinforced and piezoelectric layers are important
components of smart or intelligent structures ([1]-
[3]). For the analytical solution of laminated
composite plates, Pagano [4] firstly presented the
exact solution of the laminated plate with simply
supppted edges. Ray et al. [5,6] and Brooks and
Heyliger [7] extended this methodology to develop a
three-dimensional, exact, plane strain piezoelastic
solution for simply supported single-layer and
laminated piezoelectric plates with distributed and
patched actuators. Three-dimensional, exact
piezoelastic  solutions for simply supported
rectangular plates coupled to distributed sensors and
actuators have been presented by Ray et al. [8],
Heyliger [9,10] and Lee and Jiang [11]. Tauchert
[12] applied the classical lamination theory (CLT) to
obtain an analytical solution for a smart composite
plate. Jonnalagadda et al. [13] employed first-order
shear deformation theory (FSDT) to solve the
piezothermoelastic response of hybrid plates with a
known thermoelectric field. They presented a
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Navier-type solution for rectangular plates with all
edges simply supported, and a finite element
solution by using nine-noded Lagrangian elements,
for plates with various edge support conditions.
Huang and wu [14] have given a coupled, first-order
shear deformation theory for the piezoelectric
response of hybrid plates and a post-processing
technique to obtain the accurate response of
transverse stresses, transverse displacement, electric
potential and electric displacement. A Levy-type
solution for the bending of cross-ply, hybrid,
rectangular plates with two opposite edges simply
supported by using a mixed formulation of first-
order shear deformation and classical lamination
theories was presented by Kapuria et al. [15]. Senthil
and Batra [16] provided the analytical solutions of
piezoelectric laminated plates via Eshelby-Stroh
formalism.

It can be seen most of avaiable analytical solution
techniques for deformation of piezoelectric plates
are restricted to whose edges are simply supported.
Here, a new analytical method is developed to
analyze laminated composite plates with arbitrary
lamination and boundary conditions subjected to
mechanical and electrical loads. Using the principle
of minimum total potential energy and first-order
shear deformation theory simultaneously, two
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systems of coupled ordinary differential equations
with constant coefficients are obtained. The obtained
equations are solved analytically using the state-
space approach. In ordrer to verify the accuracy of
the present theory a Levy-type solution for
rectangular piezoelectric laminated plates with
cross-ply and antisymmetric angle-ply laminations
and two opposite edges simply supported using first-
order shear deformation theory is employed. The
comparison shows excellent agreement between the
results.

Theory and formulation
Fig. 1 shows the geometric characteristics of hybrid

multilayered plate considered herein, with side
lengths 2a and 2b and total thickness h. The
structure consists of arbitrary N orthotropic layers
which some of them can be piezoelectric, with the
spatial poling directions and a piezoelectric moduli
such like exhibiting the crystal of class mmz2.

Displacement and strain fields

Considering a rectangular cartesian coordinate
system shown in Fig. 1, the displacement field
components can be written as independent functions
of the spatial variables using first-order shear
deformation (FSDT) [17] theory as below:

u(x, y,z) = u; 0T (y) + 2y ()i (y)

V(X,¥,2) = Vi ()7 (y) + 26, ()¢, (Y) 1)
w(x, y) = w; )W, (y)

where u(x,y,z), v(x,y,z) and w(x,y,z) are respectively
the displacements in x, y and z directions, and u, (x)
G(Y): vi): Vi), wi(x), wi(y). 4(x). 4(y).
w;(x), and w(y) are unknown functions. The

infinitesimal strain tensor and the electric field
vector are related to the mechanical displacement
vector and the electric potential @ by
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Substitution of the displacements (1) into Egs. (2)
strain-displacement relations yields.
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Equilibrium equations and boundary conditions
Now, using the principle of minimum total potential
energy [18], two sets of equilibrium equations and
boundary counditions corresponding to the
independent variables can be shown to be:
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where the generalized stress resultants, g;(x) and
0; (y) are defined as
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Also the stress resultants are
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The boundary conditions consist of specifying the
following quantities at the edges of the plate. For
edges parallel to y-axis (i.e. x=%a):

Geometric (essential) Force (natural)

u; or NY

Vi or N>I<y2

Vi or M} (12)
¢, or Miy2

w; or sz

also, for edges parallel to x-axis (i.e. y=%b):

Geometric (essential) Force (natural)

Uj or Ny1
7 or N,
Z or M1 (13)
A or My
w,(y) or Qy»

Laminate constitutive relations
The linear constitutive relations for the kth
orthotropic (piezoelectric) lamina in the laminate
coordinates (x,y,z) are given in Egs. (14). As a large
electric potential difference is applied across one or
more layers of the laminate, it is assumed that the
electric field owing to the variation in stress (the
direct piezoelectric effect) is insignificant compared
with the applied electric field.

k) =Q|(k) (k) e(k)E(k) (14)

jmnEmn ~ Cmij

In the above equations Qff, denotes the

transformed reduced plane-stress stiffness matrix
and &%) is the transformed piezoelectric moduli of
the kth lamina. Upon substitution Eqgs. (4) into Egs.
(14) and the subsequent results into Egs. (11), the

stress resultants are obtained which can be presented
as follow:
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Here k® (=5/6) is the shear correction factor of

FSDT. Also Aj;, B, and D; denote the extensional

stiffnesses, the  bending-extensional  coupling
stiffnesses, and the bending stiffnesses, respectively.
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where N is the total number of layers. In Egs. (15),
{N"}, {M"} and {Q"} are the electric stress
resultants
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where N, is the number of piezoelectric layers. Note
that for layers other than piezoelectric layers, the
parts containing piezoelectric moduli should be
omitted.

Upon substitution of Egs. (4) into (15) and the
subsequent results into Eqgs. (7) and (8) the
generalized stress resultants are obtained which can
be represented as follows:
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and the generalized electric stress resultants and the

stiffness coefficients Al | BU Al and, BY are
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It must be noted that the sign ® used in Egs. (24) and
(25) is referred to array multiplication of two
matrices.

[8]= (27)

Equilibrium equations in terms of displacements
The equilibrium equations (5) and (6) can be
expressed in terms of displacements and electrical
field by substituting the generalized stress resultants
from (18) and (19). Hence, two sets of ordinary
differential equations will be obtained as follows:
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Solution of equations

Here, we employed the state-space approach [19] to
solve the equilibrium equations obtained in the
previous section. The linear system of ordinary
differential equations (28) can be expressed in the

form of single, first-order, matrix differential

equation
{X3=[CKX}+{F}
where the state vector {X} is defined as

(30)
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Xd={ui} {Xo3={vj} {Xa}={u;} {X}={vj}
Xs}={yit Xe}={4;}, {X:3={v}. (31)
{Xe}={¢i}, {Xo}={wi} {Xso}={w;}

In order to solve Eq. (30) a solution is assumed
which satisfies the associated boundary conditions at

y=+#b. In other words, by assuming solutions for
O (y),T(y),-..,w/(y) the components of matrix [C]

and vector {F} can be easily calculated. The general
soluion of Eg. (30) is given by [20]:

{X}=WIRKK}+ MR [Q1 U] {Flax (32)

where [U] is the matrix of distinct eigenvectors of
matrix [C] and {K} is a vector of unknown constants
to be found by imposing the boundary conditions at
edges x=za. Also the diagonal matrix [Q] is defined
as

[Q] = diag(e™*,e™*,...,e™%) (33)
where 4, (k=1,2...,10) are the eigenvalues associated
with matrix [C].

Using the solutions obtained from the system of
equations (28) the system of differential equations
(29) can be solved similarly. This procedure (solving
the coupled systems of ordinary differential
equations) will be continued until the solutions of
the two systems are converged.

Numerical results and discussion

In accordance with the theoretical methodology
developed in the previous sections, two problems
involving various sets of boundary conditions are
examined. The hybrid rectangular plates studied in
these problems are made up of graphite/epoxy
laminae of equal thickness and piezoelectric layers
of polyvinylidene fluoride (PVDF). The material
constants of PVDF [21] and the graphite/epoxy
laminae [13] are listed in Table 1.

As a benchmark, a Levy-type solution based on
FSDT is developed. It is well known that a Levy 's
solution exists only for cross-ply and antisymmetric
angle-ply laminates with two opposite edges simply
supported. In example 1 results obtained utilizing
the present method are compared with those
obtained by the Levy-type solution for a general
cross-ply hybrid laminate with admissible boundary
conditions. Also in example 2 a hybrid laminate with
other lamination and boundary conditions that there
exist no Levy-type solutions will be studied.
Denoting simply supported, clamped and free
boundary conditions by S, C and F, a 4-word
notation such as SFSC is employed to show the
boundary conditions on the four edges of the plate.
The 1-4th word indicates the boundary conditions on
edges x=-a, y=-b, x=a and y=b respectively. Two
types of simple supports are applied at the edge of
the laminate, which is classified as:

Sl
vi=w,=¢ =N, =M; =0 at x=*a (34a)
u=w =y; =Ny =M} =0 at y=1b (34b)
S2:
U =W =g =Ny =M, =0 at x=*a (35a)
Vi=w =y =Ny =M} =0 at y=ib (35b)

It is to be noted that S1 is used for cross-ply
laminates and S2 is used for antisymmetric angle-ply
laminates to obtain Levy's solutions.

Example 1:

First a numerical example is presented for hybrid
rectangular plate [p/0°/90°/90°/0°], which p denotes
piezoelectric layer. The plate has length-to-width
ratio a/b=2 and width-to-thickness ratio 2b/h=10.
The upper surface of double-thickness piezopolymer
is subjected to a uniform electric potential @ = @, or

a sinusoidal potential q;:(pocoszﬁcos% and its
a

lower surface is grounded (@ =0). In addition, it is
assumed that the variation of electric potential is
linear through the piezoelectric layer. In the case of
applied uniform potential, the results achived from
the present method and the Levy method are
compared by Figs. 2-4. All the numerical results for
deflections and stresses shown in what follows are
nondimensionalized as below:

W=w
e3P

— _ 2b 1
(64,0y,04)=(0y,0y,0y )[Jxlo (36)
y1Oxy VO e,

_ _ 2b

(Cx2:10x) = (04,0 )( 65,2, ]

where E, denotes the Young's moduli of PVDF layer.
The variation of nondimensionalized deflection
versus x/2a at y=0 is shown in Fig. 2 corresponding
to three sets of CSCS, FSFS and FSCS boundary
counditions. Also Figs. 3 and 4 illustrate the
distributions of normal stress ,(0,0,2/h) and

transvers shear stress & (a/2,b/2,z/h)through the

thickness of described hybrid plate under various
boundary conditions. It is to be noted that the
numerical values of interlaminar stresses are
obtained by integrating the local equilibrium
equations of elasticity.

It is seen in the above mentioned figures that there
are close agreements between the present results and
those obtained by Levy 's solution. However, it can
be seen that the magnitude of errors are different
depending on the type of boundary conditions
imposed on the edges of the plate.

The through-thickness variations of shear stresses
&, (a,b,z/h) and &, (a/2,b/2,2/h) due to the applied
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sinusoidal potential are shown in Figs. 5 and 6
respectively. In this case there is no difference
between Levy 's solutions.

Example 2:

To demonstrate the applicability of the proposed
method to analyze hybrid laminated plates with
arbitrary lamination and boundary conditions, as the
second example square hybrid plate [p/45°/90°/-
45°/p] with the aspect ratio 10 is considered.

Two piezocelectric layers bonded to the top and
bottom surfaces of the laminate have equal
thicknesses of h/10. A sinusoidal potential of peak
amplitude of @, is applied to the upper and lower

surfaces of the plate, with the other surfaces of
piezoelectric layers grounded.

The variation of deflection at y=0, along the length
of the plate with four sets of boundary conditions:
SSSS, CCCC, CFCF and CFSF, is presented in Fig.
7. As expected, the curves corresponding to
boundary conditions CCCC and SSSS are located
above and below the other curves respectively.

Figs 8 and 9 depicts the through-thickness
distributions of normal stress 5,(0,0,2/h) and

transvers shear stress G,(al2,b/2,2/h) for different
sets of boundary conditions.

Conclusion

A new analytical method is developed to study the
bending behavior of hybrid piezoelectric laminates.
In spite the procedure is simple, the proposed
method has the capability for analyzing hybrid plates
with arbitrary lamination and boundary conditions.
Using the Levy-type solution as a benchmark, the
excellent agreement beween the present results for
several sets of boundary conditions, especially in the
case of applied sinusoidal potential, are found.
Generally, for the case in which the plate is
subjected to a uniform electric potential the amount
of generated error depends on the type of boundary
conditions imposed on the edges of the plate.

It is expected that increasing the number of terms in
the assumed displcement field, may improves the
accuracy of the results obtained by the proposed
method.
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Table 1. Material properties of graphite/epoxy and 0.5
PVDF 0af TTT FarS e

Property graphite/epoxy PVDF 03k T Fcs ey

E; (GPa) 181 2.0 o2k
E, 103 2.0 ok
G 7.17 0.752 ~ of
Gys 2.87 0.752
Gat 7.17 0.752 oF L
V12 0.28 0.33 02p

ey (Cm?) - 0.0687 03fF
€32 - 0.0687 0.4F

'0'5-20””-{0””(') “‘1lo‘

6,(0,0,2/h)
Fig. 3. Variations of normal stress Ey(0,0,z/h)

through the thickness of a hybrid plate [p/0°/90°
/90°/0°] subjected to the uniform potential.
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Fig. 5. Variations of shear stress & (a,b,z/h) 03r
through the thickness of a hybrid plate [p/0°/90° 04F
/90°/0°] subjected to the sinusoidal potential. 03F
0.5 F 0.2 _
0.4 F 01fF
03 N of
0.2k o1k
0.1 02k
N of 03fF
01f 04F T 0SS5
-0-2; FSFS, Present '0'5.71|o‘ — I5 — (I) — é — ‘1|0
[ — —=— - FSFS, L -
.03F —— Fscs, Present c,(0,0,z/h)
I — —— - FSCS, Levy i L
I —e— CSSS,P t -
04F T csss,l_;iizen Fig. 8. Variations of normal stress ,(0,0,z/h)
through the thickness of a hybrid plate [p/45°/90° /-

_05:lw\Hl\\HlHHl\\\\l\\\\lmmlm\\ f i BN BN WU FUEEE P
"1.75-1.5-1.25 -1 -0.75-0.5-0.25 0 0.25 0.5 0.75 1 1.25

o (@2.b/2.2h) 45°/p] subjected to the sinusoidal potential.
c,(a/2,b/2,z

Fig. 6. Distributions of transvers shear stress

G,.(a/2,b/2,5/h) through the thickness of a hybrid plate
subjected to the sinusoidal potential.
/0°/90°/90°/0°] subjected to the si idal ial
0
S 7
o — 77
v — — — - CFSF s
AN ———— SSsS // /-/
\ N /. /.
\ A Y f /
2F N \ s
~ \ N # /
S \ N 7 /
ﬁ 3k \ N S /// /
\\></ \ A Y —..:-"/"/ ,/
= \.\ 7
4t N 7
\ 4 -
| '\ ./ _
5| '\_\ s c,,(a/2,a/2,z/h)
: R -7 Fig. 9. Distributions of transvers shear stress
) R TS S S 6. (a/ 2,b/ 2,2/h) through the thickness of a hybrid
05 -0.25 0 0.25 0.5 . . .
M plate [p/45°/90°/-45°/p] subjected to the sinusoidal

. o . potential.
Fig. 7. Variations of deflection versus x/2a at y=0 for

a hybrid plate [p/45°/90°/-45°/p] subjected to the
sinusoidal potential.



