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            Abstract 
In this study, an analytical method is developed to analyze analytically displacements and stresses in a 
functionally graded composite beam subjected to transverse load. Assuming the functionally graded beam 
has nonhomogeneous mechanical properties in the thickness direction, the displacements and stresses of 
the beam are obtained based on a first-order shear deformation beam theory (FSDBT). The non-linear 
strain-displacement relations in the von Kármán sense are used to study the effect of geometric non-
linearity. Equilibrium equations are obtained by using the principle of minimum total potential energy 
and solved exactly. The results obtained from this method are compared with the finite element solution 
done by ANSYS. Numerical results of the first-order linear and non-linear theories are presented to show 
the effects of using FGMs instead of classical layered composites on the deflections and stresses. 
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Introduction  
The concept of functionally graded materials 
(FGMs), i.e. composites with smoothly varying 
constitutive properties, was first suggested by Niino 
and coworkers at the National Aerospace Laboratory 
in Japan [1]. Functionally graded materials 
constitute a new class of heterogeneous materials 
that allow for spatial optimization of properties in 
one or more dimensions in a defined geometry [2]. 
Functionally graded materials are characterized by a 
continuously changing property due to a continuous 
change in composition, in morphology, in 
microstructure or in crystal structure from one 
surface of the material to the other [3]. The original 
idea was to manufacture super-heat-resistant 
components for use in the engines and airframe of 
supersonic plane, combining the heat resistance of 
ceramics with the structural properties of metals [4]. 
Compared with classical laminated composite 
materials, functionally graded materials provide 
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superior thermo-mechanical performances under 
given loading circumstances [5]. In classical 
laminated composites, the sudden change in material 
properties across the interface between discrete 
materials can result in large interlaminar stresses 
leading to delamination. Furthermore, large plastic 
deformations at the interfaces may trigger the 
initiation and propagation of cracks in the material. 
One way to overcome these effects is to use 
functionally graded materials [6-7]. FGMs can be 
used to improve fracture toughness of machine tools, 
wear resistance and oxidation resistance of high 
temperature aerospace and automotive components, 
and ballistic efficiency of light weight armor 
materials [8]. 
With the advent of FGMs there has been a renewed 
interest in inhomogeneous elasticity. For example 
Tanaka et al. [9, 10] designed property profiles for 
FGMs to reduce the thermal stresses. Reddy [11] has 
presented solutions for rectangular plates based on 
the third-order shear deformation plate theory. The 
formulation accounted for the thermo-mechanical 
coupling, time dependency, and the von Kármán-
type geometric non-linearity. Reiter et al. [12] and 
Reiter and Dvorak [13] performed detailed finite 
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element studies of discrete models containing 
simulated skeletal and particulate microstructures. 
They compared their results with those computed 
from homogenized models in which effective 
properties were derived by the Mori-Tanaka and the 
self-consistent methods. Sankar [14] obtained an 
elasticity solution for a functionally graded beam 
subjected to transverse loads. Praveen and Reddy 
[15] investigated the response of functionally graded 
ceramic-metal plates using a plate finite element that 
accounts for the transverse shear strains, rotary 
inertia and moderately large rotations in the von 
Kármán sense. Yang and Shen [16] analyzed the 
non-linear bending and postbuckling behaviors of 
functionally graded rectangular plates subjected to 
combined action of transverse and in-plane loads 
and without or resting on an elastic foundation by 
using a semi-analytical approach. 
In this paper, a first-order shear deformation beam 
theory (FSDBT) is used to analyze displacements 
and stresses in beams made of functionally graded 
materials. The non-linear strain-displacement 
relations are used to study the effect of geometric 
non-linearity on displacements and stresses of the 
beams. The equilibrium equations are solved exactly 
for various loading conditions. The results are 
compared with those obtained from the finite 
element solution. Finally, effects of considering 
geometric non-linearity and also effects of using 
FGMs instead of convensional bi-material (ceramic-
metal) layered composites on deflections and 
stresses are determined. 

 
Material property estimation approach 
There are some approximations that can be used to 
model the variation of material properties in a FGM. 
One such variation is a power-law distribution. 
According to this estimation method, a generic 
material property p(z) at a point z in FGMs is 
approximated by: 

( ) 1( )
2

n

t b b
zp z p p p
h

⎛ ⎞= − + +⎜ ⎟
⎝ ⎠

 (1) 

where tp  and bp  are the properties of the material 
at the top and bottom surfaces of the beam, 
respectively, h is the total thickness of the beam and 
n is the value of the gradient exponent that controls 
the compositional gradient, either linear or non-
linear. Here we assume that moduli E and G vary 
according to Eq. (1) and the Poisson's ratio ν  is 
assumed to be a constant. Distribution of volume 
fraction through the thickness of the beam for 
various values of the power-law index n is shown in 
Fig. 1. 
 
 

Theoretical formulation 
Consider a functionally graded beam shown in Fig. 
2. It is to be noted that the origin of the coordinate is 
at the mid-plane of the beam. The length of the beam 
is L, its total thickness is h, and its width is b. The 
bottom surface of the beam ( / 2z h= − ) is subjected 
to a normal traction. That is: 

( , / 2) ( )zz x h q xσ − = −  (2) 

It is assumed that the upper surface ( / 2z h=  ) is 
completely free of tractions, and the lower surface is 
free of shear tractions. 
 
Displacement field and strains 
Here a first-order shear deformation plate theory is 
used to derive first-order shear deformation beam 
theory. The displacement field is assumed as: 

0
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where 0u , 0v  and w denote the displacements of a 
point on the middle plane of the plate ( 0z = ). Also 

xψ  and yψ  are unknown functions which denote 
rotations of the cross-section about y and x axes, 
respectively. In the present study we wish to 
investigate the effect of geometric non-linearity on 
the response quantities. Therefore, the von Kármán-
type of geometric non-linearity is taken into 
consideration in the strain-displacement relations. 
Substituting Eqs. (3) in the appropriate strain-
displacement relations results in: 

0 0,    ,    0x x x y y y zzk zkε ε ε ε ε= + = + =  
0 0 0,    ,    xy xy xy xz xz yz yzzkγ γ γ γ γ γ= + = =  
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Plate equilibrium equations 
Using the principle of minimum total potential 
energy, the equilibrium equations can be shown to 
be: 
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where 

N( ) x xy

xy y

w ww N N
x x y

w wN N
y x y

⎛ ⎞∂ ∂ ∂
= +⎜ ⎟∂ ∂ ∂⎝ ⎠

⎛ ⎞∂ ∂ ∂
+ +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (7) 

and ( , )q x y  is the transverse load that is applied on 
the bottom surface of the plate. Also the force and 
moment resultants are defined as: 
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The primary variables of the theory are: 

0 0, , , ,x yu v wψ ψ  (9) 

Also the secondary variables are; 
at 2x L= ± : 

, , , ,x xy x xy x xy xN N M M N N
w w

Q
x y

∂ ∂
+ +

∂ ∂
 (10a) 

at 2y b= ± : 

, , , ,xy y xy y xy y yN N M M N N
w w

Q
x y

∂ ∂
+ +

∂ ∂
 (10b) 

The linear constitutive relations are given by: 
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where 
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Upon substitution of Eqs. (4) into Eqs. (11) and the 
subsequent results into Eqs. (8), the force and 
moment resultants will be obtained which can be 
presented as follows: 
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and ( )2 5 / 6k =   is the shear correction factor. 
 
Beam equilibrium equations 
Next, in order to derive the beam theroy it is 
assumed that: 

0y yN M= =  (15) 

By imposing the assumtions (15) in Eqs. (13a) and 
(13b) resuls in: 
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where 
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It is also assumed that all the force and moment 
resultants are functions of coordinate x only. Hence, 
Eqs. (6) are simplified as follows: 
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where q(x) is the transverse load on the bottom 
surface of the beam as shown in Fig. 2. 
 
Exact solutions 
In this section a beam subjected to a uniform 
transverse load on its bottom surface is considered. 
The boundary conditions of the beam at / 2x L= ±   
are assumed to be the same. In order to obtain the 
exact solutions of equilibrium equations (18), Eq. 
(18a) is integrated with respect to x to yield: 

0 0 0
11 11   or   x x x x xN N A B k Nε= + =  (19) 

where 0
xN  is a constant of integration. Next we 

solve Eq. (11) to obtain: 
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With (20), Eqs. (5) and (13), with 0y∂ ∂ = , are 
substituted into Eqs. (18) to yield: 
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where a prime indicates an ordinary derivative with 
respect to x. Eqs. (21) are five linear ordinary 

differential equations with constant coefficients. It is 
noted that Eqs. (21b) and (21d) are both 
homogeneous and in terms of 0v  and yψ  only. 
Since the corresponding boundary conditions (i.e., 

0 0v =  or 0xyN =  and 0yψ =  or 0xyM = ) are 

all homogeneous and in terms of 0v  and yψ  only, 
the solution of Eqs. (21b) and (21d) is only a trivial 
one. That is: 

0 0yv ψ= =  (22) 

Now it remains to solve Eqs. (21a), (21c) and (21e). 
These equations can be solved analytically for any 
sets of boundary conditions in terms of the unknown 
constant 0

xN . After solving these equations in terms 

of 0
xN , we note that from symmetry we have:  

0 0     at     2u x L= = ±  (23) 

This will allow us to find 0
xN  in a trial and error 

process. Towards this end, we note that integrating 
Eq. (21a) once from 0 to 2L  and then from 2L−  
to 0 results in: 
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Clearly, because of symmetry, the integral in (24b) 
is negative of the integral in (24a). On the other 
hand, we have: 

0 0 0( 2) ( 2) (0) 0u L u L u= − = =  (25) 

Therefore, we conclude that: 

( )2 02 11
0

11 112 2
L x xwB N Ldx

A A
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Finally, by making the solutions of the Eqs. (21a), 
(21c) and (21e) to satisfy (26) in a trial and error 
process, we will obtain the exact value of 0

xN . 
 
Results and discussion 
Here we present exact results for a representative 
clamped supported beam which its bottom surface 
( 2z h= − ) is rich of Aluminum and the top 
surface ( 2z h= ) is rich of Zirconia (see Fig. 3). 
Boundary conditions of the clamped-clamped beam 
are assumed as: 

0 0xu wψ= = =  (27) 
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It is also assumed that the beam is subjected to a 
uniform transverse load (i.e., 0( )q x q= ). 
Furthermore, the length-to-thickness ratio (i.e., L/h) 
is assumed to be 15 in all numerical examples. The 
mechanical properties of the constituents are as 
follow: 

70GPa, 151GPa
0.3, 0.3

m c

m c

E E
ν ν

= =
= =

 (28) 

where m and c indicate metal (i.e. Aluminum) and 
ceramic (i.e. Zirconia), respectively. In the 
numerical results the various non-dimensionalized 
parameters used are: 

Length: x/L 
Center deflection: w/h 
Longitudinal stress: ( )Lqhxx 0/σσ =  

Load parameter: ( )44
0 / hELqq m=  

(29) 

where 0q  denotes the intensity of the applied 
uniform load. 
It is noted that for brevity all the numerical examples 
presented in what follows are for a FG beam with 
power-law index n=3 subjected to the load 

36.16q = . 
In order to test the correctness and accuracy of the 
present method, bending of the FG beam under 
uniform transverse load is considered. The 
assessment of the accuracy of the present method is 
obtained by comparison the results with those 
obtained by utilizing the finite element package of 
ANSYS. The clamped supported beam has been 
modeled in ANSYS by using three-dimensional      
8-node structural solid elements. In order to model 
the FG beam in ANSYS, the graded layer is 
discretized into several homogenized sublayers of 
the equal thickness with different matrial properties 
obtained from Eq. (1). Also the mesh is refined till 
no significant change in displacements and stresses 
are obtained. Figs. 4 and 5 illustrate the distributions 
of non-dimensionalized longitudinal deformation 

0u L  and transverse deflection w h , respectively, 
along the middle plane of the beam. Also variation 
of  longitudinal stress xσ  along the bottom surface 
of the beam is shown in Fig. 6. It is observed from 
these figures that the present results agree well with 
those obtained from finite element method. 
Fig. 7 presents the variation of the center deflection 
of the beam versus the load parameter q .  It is seen 
that for the maximum deflections greater than 0.3h a 
non-linear solution is required. 
Figs. 8 and 9 show the effect of geometric non-
linearity on the distributions of non-dimensionalized 
transverse deflection along the middle plane and 
non-dimensionalized longitudinal stress along the 

bottom surface of the beam, respectively. It is seen 
that both the maximum deflection and normal stress 
in non-linear analysis are smaller in magnitude in 
compared with linear analysis. 
Finally, it is intended here to study the effects of 
using a FG beam as a substitue for a layered bi-
material composite beam. To this end, a bi-material 
beam where the transition is made smooth (see Fig. 
3) and a two-layered equal thickness composite 
beam that the bottom and top layers are made of 
Aluminium and Zirconia (see Fig. 10), respectively, 
are considered. Distributions of non-dimensionalized 
transverse deflection and longitudinal stress in 
Aluminium and Zirconia beams and also in the FG 
and classical layered composite beams are illustrated 
in Figs. 11 and 12. The transverse deflection are 
generated for FG beams with the power-law indexes 
0.5, 1, 3 and 5. It is observd that by using a FG beam 
as an alternative for a classical two-layered 
composite beam both the transverse deflection and 
maximum longitudinal stress could be reduced. 
 
Conclusions 
An analytical solution is obtained for functionally 
gradient beams subjected to uniform transverse 
loadings. The formulation accounts for the von 
Kármán-type geometric non-linearity. The Poisson 
ratio is assumed to be a constant, and the Young's 
modulus is assumed to vary according to a power-
law distribution in terms of the volume fractions of 
the constituents. A first-order shear deformation 
beam theory is used to analyze displacements and 
stresses in beams made of functionally graded 
materials. The results are obtained for the power-law 
index n=3 and compared with the finite element 
solution. It is found that the stresses and 
displacements in FG beams decrease about 30% in 
compared with classical two-layered composite 
beams made of Aluminum-Zirconia. Also the effect 
of geometric non-linearity on stresses and 
displacements is determined, which significantly 
affect the response of a functionally graded beam 
under mechanical loads.     
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Fig. 1. Distribution of volume fraction of the 
ceramic phase through beam thickness for 

various values of the power-law index n 
 

 
 
Fig. 2. A FG beam subjected to a transverse load 
 

 
Fig. 3. A FG Aluminum-Zirconia beam 
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Fig. 4. Distribution of longitudinal deformation 
along the middle plane of the beam 
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Fig. 5. Distribution of transverse deflection w h  

along the middle plane of the beam 
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Fig. 6. Distribution of longitudinal stress xσ  at 

the bottom surface of the beam 
 

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60

w
/h

Linear

Non-Linear

 
Fig. 7. Vriation of center deflection of the beam 

versus the load parameter q  
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Fig. 8. Distribution of linear and non-linear 
transverse deflection w h  along the middle 

plane of the beam 
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Fig. 9. Distribution of longitudinal stress xσ  

along the bottom surface of the beam for linear 
and non-linear analyses 

 
 

 
 

Fig. 10. Classical layered composite made of 
equal thickness Aluminium and Zirconia layers 
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Fig. 11. Distributions of transverse deflection 
w h  along the middle plane of Aluminium, 
Zirconia, FG and classical layered composite 

beams 
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Fig. 12. Distributions of longitudinal stress xσ  

along the bottom surface of Aluminium, Zirconia, 
FG and classical layered composite beams 
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