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Abstract

In this paper, the application of distributed-lumped (hybrid) modeling technique (DLMT), as introduced by
Whalley [1], is considered in modeling the forced longitudinal vibration of systems. To illustrate the
simplicity and efficiency of the method, an industrial example of rotating shaft with a lumped element
subjected to various longitudinal forces is analyzed. Natural frequencies obtained from this method are
compared with those obtained by using finite element method. Also time responses of the system subjected to
three different types of longitudinal forces are computed by this method.
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1. Introduction

The question of vibration model of industrial
systems, especially rotating shafts, is the basic
consideration in engineering design of dynamic
systems. Not only the avoidance from natural
frequencies of such systems have been observed
since long before, but the condition monitoring
(CM) of highly sensitive and precious plants such as
turbines are applied widely using accurate vibration
model of systems. Condition Monitoring for rotating
machinery incorporates a wide range of techniques,
such as oil analysis, wear-debris analysis, ultrasonic,
corrosion, and vibration analysis. Vibration
condition monitoring is, arguably, the oldest type of
machinery  condition  monitoring.  Measured
vibration signals can reveal important and detailed
information about possible fault which may exist in
a machine [2]. Fault identification in rotating
machinery using vibration analysis is a constantly
expanding field. Developments are continually made
with the use of new analysis methods, increased
computing power, measurement techniques, and so
on.

Among different methods of modeling systems such
as lumped-lumped modeling technique (LLMT) and
distributed-lumped modeling technique (DLMT), or
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numerical and approximate methods such as transfer
matrix method (TMM) and finite element method
(FEM), it is clear that the model combined with both
the distributed and lumped elements is the best
representative of complex and accurate systems.
Many industrial systems can be modeled as a
rotating shaft with disks on it, such as gear systems,
propellers, pumps, turbines, mills, etc. In such
systems, the disks, which is the representative of
blades, gears, etc., is impressed by different loads,
which affect the vibration of system and lead to
different frequency and time responses. Comparison
between safe and defected system responses brings
us an effective and advantageous method to the
condition monitoring of expensive and important
systems such as turbines.

In this study, for a simple example, the longitudinal
vibration of a general two-stage distributed-lumped-
distributed system is considered. The system is
modeled by distributed-lumped technique, and the
natural frequencies are investigated for two sets of
boundary conditions (B.C.’s): clamped-free and
clamped-clamped shaft, which are more common in
real systems. To check the correctness and accuracy
of the present method, the natural frequencies and
mode shapes of an industrial example of the system



13™ Annual (International) Mechanical Engineering Conference — May 2005
Isfahan University of Technology, Isfahan, Iran

achieved from this method are compared with those
obtained by utilizing the commercial finite element
package of ANSYS, revision 7. The frequency
responses are computed in response to the limited
step, limited ramp, and delta force functions, using
hybrid model of the system for clamped-free shaft.
Time responses are also calculated employing the
inverse Fourier transform (IFT) and convolution
integral together.

2. The General

Model

Generally speaking, hybrid modeling technique
deals with systems by dividing them into two
element types.

1) The distributed element, which is the main
part of shafts, rotors or any other
continuous part of the systems with
distributed mass or inertia.

2) The Ilumped element which is the
supplementary part of shafts, rotors, etc.
with concentrated mass or inertia such as
disks, gears, propellers, pulleys, and so on.

In this way, a system is considered as a combined
set of distributed and lumped elements, in which the
vibration of final model is obtained by setting the
distributed and lumped matrices of different parts
and combining them together (see Fig. 1).
Distributed and Ilumped matrices are formed
according to the analytical equations of motion, so
this is the highly accurate method in contrast with
other approximate methods such as transfer matrix
method, finite element method, and so on. Another
advantage of this method compare with analytical
method is that the continuity conditions between
distributed and lumped elements are identically
satisfied and it remains only to satisfy the boundary
conditions of the system. To this end, there is no
difficulty in using this approach for analyzing
systems with mixed series of distributed and lumped
elements as shown by Barlett et al. [3].

Distributed-Lumped

2.1. Deriving Transfer matrix for

Distributed Element
The equations of motion for longitudinal vibration of
a thin rod with the density o and the modulus of

elasticity E can be expressed by the following
equations (e.g., see [4,5]):

op(x.t) _ pAazu(x,t)

P e, 1)
auéx,t) _ p(x,t) @)
X AE

where u(x,t) and p(xt) are the displacement and
internal force functions, x is the distance along a
section and t is time.

Differentiating equation (2) with respect to x and
substituting for op/ox in equation (1) yields:

o2u(x,t o2u(x,t
(D) _ p 2°u(y) 3

OX E ot

Also differentiating equation (2) twice with respect to

t results in:

o%u(xt) _ 1 a%p(x.t) @
xot? AE - at?

Differentiating equation (1) with respect to x gives:

a?p(xt) A63u(x,t)

5
ox? oxot? ©)
Substituting equation (4) into (5) results in:
% p(xt % p(x.t
p(x.t) _ p o7p(x.t) (6)

ox? E at?
Equations (3) and (6) are the main equations of
longitudinal vibration. Next, assuming zero initial
conditions, Laplace transformation of equations (6)
and (3) gives:
2
TPOY _22ps1)=0
ox? E
o%u(s,t)
ox?
where s is the Laplace transform variable. Equations
(7) can be written in compact form as:

0%k

)
gszu(s,t) =0

2
pvE k=0 (8)
where
k =u(x,s) or p(x,s) 9)
and

—s.|P
r= s\/; (10)

The general solution of equation (8) is given by:
k=re™+re"
where

e™ = cosh I'x +sinh I'x

e "™ = cosh I'’x—sinh I'x
Therefore,
k=(r,+r,)coshI'x+(r, —r,)sinh I'x (11)
Hence, the solution of equations (7) will be:
p(X,s) = AcoshT'x + BsinhT'x

u(x,s) =CsinhI'x+ DcoshT'x

The unknown constants of integration A and D are
obtained by imposing the boundary conditions at
x=0. That is,

A= p(0,s)

D =u(0,s)

Next, it remains to find B and C in equations (12).
Differentiating equation (12) with respect to x and

(12)

(13)
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substituting for op/ox and ou/ox from Laplace
transformation of equations (1) and (2), respectively,
gives:

PAs?u(x,s) = Al'sinhTx + BI cosh T

1 _ (14)
AE p(x,s) = CI'coshI'x + DI'sinhI'x
Now putting x=0 in equations (14) results in:
B =sA4/pE u(0,s) =£u(0,s)
1 1 (15)
C=——=—p(0,3)==p(0,s
ATE p(0,9) E p(0,9)

Hence, the solution of equations (7) for the j"
element can be expressed in matrix form as:

{pj(x,s)} 1(:oshl“jx &ysinh[;x {pj(O,S)}

uj(x’s) - ?SInhFJX COShFJX uj(o’s)
]

where

) =SAj\PiE;

According to Fig. 1, for the j"" element at x=0
P;(0,5)=p;(s)

u;(0,s)=u;,4(s)

Therefore,

p;(s) ) 1cosh1"jlj &ysinh Tl pi1(s) 16)
uj(s)_?jsinhl"jlj coshTl; U (s)

2.2. Deriving Transfer

Lumped Element

The equation of motion and continuity conditions in
Laplace domain of the j"" lumped element, which is
exposed to the applied force f in the x-direction are
written as:

Pj(s)—pja(s)+ fi(s) = mjszuj(s)
uj(s)=u;_(s)
Therefore, equation (17) can be expressed in the
matrix form as:

{pj(s)}:|:l ijZ:Hpjl(s)}_}_{_ fj} (18)
u;(s) 0 1 |luj4(s) 0

3. Hlustrative Example

In this section, the methodology outlined previously
is applied to a shaft with a disk on its middle (see
Fig. 2), which is a simplified model for very useful
and common industrial systems. The specifications
of the system considered here are shown in Table 1.
As mentioned already, the present method can be
used for analyzing systems with any number of

distributed and lumped elements without any
increasing in difficulty.

Matrix for

(17)

3.1. DLMT Solution

To represent the main hybrid model of the system, it
should be noticed that the system is combined of
two distributed and one lumped elements (Fig. 3).
For the distributed elements 1 and 3 the transfer
matrices can be written according to equation (16)
as:

{Lil} [Tol. {500 } {5:} =[To ]3{522} (19)

where
coshTl

Tol=| Lginnry
¢

&sinhTl

coshTl (20)

Also the transfer matrix for the lumped element is:

0o

where

[TL]Z :{1 23 } (22)

0 1
Substituting equations (19) into (21) yields [6,7]:

cosh 2’ + lmzi’ls2 sinh 2T &sinh 21 + m,s® cosh? Il
{ 93} _ 2 {po
u

3 £tsinh 201+ m,&%s%sinh® Tl cosh 2T +%m2§’1szsinh or |t

coshI'l  &sinhTl|(- f
+L’lsinhrl coshTl H 0 }
(23)

Equation (23) may be shown in the simple form as:

—f
Us Ug 0
where
cosh 2Tl +% m,&7s?sinh 201 &sinh 201 +m,s” cosh? Tl

Cl=
[ ] -1 i 202 ainh?2 1 12 o
& sinh 21 + m,&E°s* sinh* Tl costh‘I+Em2§ s sinh 2T

B coshT'l  &sinhTl (25)
| &7 sinhTl cosh Tl

Equation (24) is the transfer matrix of the overall
system relating axial forces and axial displacements
of the left and right end of the system.

The Laplace transform variable ‘s’, in general, is the
representative of equation s=o +iw ; in which the
real part (o) shows damping, and the imaginary

part (i) shows vibrating frequency. It is assumed

in the present example that o =0 and, therefore,
equation (24) will be altered from Laplace domain
into frequency domain by putting s =iw [6].

For each sets of boundary conditions one
characteristic equation can be obtained that its
solutions will give the natural frequencies of the
system. In what follows, a rotating shaft with a
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lumped mass on it with two different boundary
conditions will be considered.

3.1.1. Clamped-Free System
Assuming that the shaft is clamped at the position
zero, and free at the position 3, the boundary
conditions will be (see Fig. 2):
up =0 (at clamped end)

p; =0 (at free end)

According to the above relations, equation (24) can
be arranged as:

(26)

1 S _Dy 0
{ po} _|ca Cu { pa} . Dy {f f }
Ug Cu _CuCyp +Cyy | Uo _Cu Dy+D, 0 0
Cll 11 Cll

@7)
where uy, ps, and f are the inputs and u; and p,
are the outputs of the system.
In this case, the natural frequencies are obtained by
plotting us/f , for instance, as shown in Fig. 4. In
this view, the natural frequencies occur at the peaks
of the spectrum. From equation (27), it is clear that
the peaks are the result of denominator approaching
zero. Since in all relations C,; is the denominator,
so the natural frequencies are the roots of C;.
Other than that, putting the relations (26) in equation
(24), and neglecting the term coincides with f
(because the natural frequencies are independent of
applied force) gives:
Cy1Pg =0
Ca1Po =U3
The first equation satisfies when C;; =0, which is
another reason for computing the roots of C;; to

find the natural frequencies as well. The results for
this case are listed in Table 2.

(28)

3.1.2. Clamped-Clamped System
In this case, the boundary conditions are expressed
as:

U, =0
’ (29)
US = 0
Hence, equation (24) can be arranged as:
c11 C11c22 Cll
- +C Dy -Dy =2 0
Ps _ Co Co 12 Us . 11 21 Cor _f
Po 1 _Ca Uo _Dy o/l O
CZ]. CZ]. c21
(30)

whereu,, Uz, and f are the inputs and p; and pg
are the outputs of system. The natural frequencies
are obtained by plotting p;/f , for instance, as
shown in Fig. 5. Similar to the discussion presented
in the previous part, the roots of C,; should be

computed in this case. The results for this case are
listed in Table 3.

3.2. FEM Solution

To contrast and confirm the results with another
method, the finite element method is used to
investigate the natural frequencies. The system is
modeled by ANSYS (7) software, and meshed using
brick 45 (8 nodes 3D) elements. Block Lanczos
solver of ANSYS is used in the analysis. The natural
frequencies are listed in Tables 2 and 3. Also the
first two mode shapes for clamped-free and
clamped-clamped boundary conditions are shown in
Figs. 6-9.

3.3. Frequency and Time Responses

Since the rotor systems are usually subjected to
different external forces, the effect of three
important types of forces on a clamped-free shaft is
investigated.

To acquire the frequency response, three types of
applied forces (limited step, limited ramp and
impulse functions) in Laplace form are substituted
into equation (24). These three types of forces are
shown in Figs. 10-12. The frequency responses for
u; and p, showed that these parameters tend to
infinity at the natural frequencies. Also the disk
displacement can be obtained through equation (21).
For the sake of brevity, however, theses parameters
are not presented here.

To compute the time response, both the inverse
Fourier transform and convolution integral are used
together. Firstly, the inverse Fourier transform
which is expressed as [8]:

X(t) :%jﬁ X()e do (31)

is used to find the time response of system to the
unit impulse (without delay). In equation (31), X(®)
is po/f , ug/f or u/f which are obtained

from equations (27) or (21). Since the referred
functions are complex, the integral relation can be
expressed numerically as:

X(t) = izk“ [A(@, ) cos(e, 1) - B(@, ) sin(w,t) Ao (32)
r=1

where

W, = Ao (33)
In equations (33) A(w,) and B(w,) are the real and
imaginary parts of function x(w) , respectively.

Secondly, the convolution integral that is expressed
in the form:

t
y(©) = [ f(E)x(t-£)de (34)

0
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is used to compute time response of the system to
the forces mentioned before. In equation (34), f (&)
is the force defined in the form of matrix, and the
whole relation can be computed numerically (for
example, by using MATLAB software function

References

1-

Whalley, R., The Response of Distributed-
Lumped Parameter Systems, Proc IMechE, Vol.
202, No. C6, 1988, pp 421-428.

‘conv’ [9]). 2- Hunt, T.M., Condition Monitoring of
Figs. 13-15 show the dynamic response of u;, U, Mechanical and Hydraulic Plant: A Concise
and p, respectively. It is seen that the first part of ::‘trl?dfgggn and guide, London, Chapman and
. . a .

the spectrum has zero quantity, as the force is equal ’ .
to zero (no force). However, the second part shows 3- Eartle}t, '; WIT\:HEKI’ERIS Gtals EIOW 'T Pflges ?nd
vibration, in which the amount is two times bigger u(;mg S,t rc|>cE echk, rar V Iouzrgg 01993;5 em
in response to limited step contrasting with limited Zrl] 59 ontrol Engineering, vol. ' » PP
ramp, as it is expected. Also the third part shows R I
vibration after finishing force, and the altitude of 4- l'\\/l/lgg(r):\;\:::’nl%ﬁ'c Fngz)dlamentals of Vibration,
}[/c;b;r?técr)]g is related to the situation that force comes 5- Thomson, W. T. and Dahleh, M. D., Theory of

' Vibration with Applications, Prentice Hall, 5"

. edition, 1998.
4. _COﬂCIUS'onS 6- Aleyaasin, M., Ebrahimi, M. and Whalley, R.,
This paper shows how the DLMT can be used to Flexural Vibration of Rotating Shafts by
analyze a complex vibrating system for investigating Frequency Domain Hybrid Modeling, Journal of
natural frequencies, time and frequency responses. Computers and Structures, Vol. 79, 2001, pp
The frequencies computed by DLMT are compared 319-331 ’ ' '
with FEM results, in two cases, and as it is shown in 7- Farshidianfar, A. and Dalir, H., Frequency
Tables 2 and 3 the two methods are differed less Response of Longitudinal Vibration Using
than two percent, which confirms the DLMT results. Distributed Lumped Modeling Technique
Since the equations of motion are solved exactly in Proceeding of IMEC 2004 Internationai
DLMT, the achieved results are in high accuracy. Mechanical Engineering Conférence, Kuwait,
It is also shown that DLMT can be used to compute 2004.
the frequency and time responses to different forces, 8- Oppenheim, A. V., Wilskey, A. S. with Young,
imgzzgggﬁleﬁ&ﬁ:@t to include the force effects I. T., Signals and Systems, Prentice-Hall Inc.,
: . L 1983.

The DLMT can be used for other_ kln(_j of vibrations, 9- Carlson, G. E., Signal and Linear System
say, torsional and transverse vibrations. Also the Analysis, John Wiley & Sons Inc., 2™ edition
present method is straightforward and general and 1998 ' ’
can readily be used in developing a more advanced
theory such as vibration of Timoshenko’s beams.
Figures and Tables

P Pi P2 Pu-1 Pn Pn-}-f

O_’ Distributed > Distributed L 5 — Distributed > Distributed | >

or (] e or or
Lumped Lumped | s Lumped Lumped
O_' Element » Element [ —* Element * Element [—*
u, u, U, u ., U, U,

1Y, element

il
2" element

il i)
n" element )" element

Fig. 1 - General series representation of a distributed lumped parameter system (Hybrid Model)

-
P g »ps ,
[e—— I m—S
ty— —lly — =iy = i

Py

iy

Py B 12 B

Distributed
1 Element

Distributed
0 Element

Lumped
1 Element

Fig. 2 — General model of rotating rotor system
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TIME RESPONSE : disk displacement ul(m) vs t(second) for clamped-free b.c.
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Fig. 11 - Step force function

TIME RESPONSE : end force PO(N) vs t(second) for clamped-free b.c.
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Fig. 15 —Time response of force at the clamped
point of shaft under ramp-step force function

Fig. 12 — Ramp-step force function
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Table 1 — Specifications of the system

Shaft Length 21 4m
Shaft Diameter d g4 0.15m
Mass of Shaft per Unit Length m 137.837 kg
Density of Shaft Material p 7800 kg/m?®
Modulus of Elasticity of Shaft E 200 GPa
Shear Modulus of Shaft G 80 GPa
Mass of Disk 100 kg
Radius of Disk 1m
Moment of Inertia of Disk 50 kg.m?
Disk Thickness 0.08 m

Table 2 — Natural frequencies of clamped-free rotating system

Frequency (Hz) f, o fa f, f, f, f, f,
DLMT Solution 290 875 1464 2064 2671 3285 3902 4523
FEM Solution 292 881 1480 2085 2704 3321 3953 4572
Error Percent
(FEM in respect 0.690 0.686 1.093 1.017 1.245 1.096 1.307 1.083
to DLMT)
Table 3 — Natural frequencies of clamped-clamped rotating system
Frequency (Hz) f, f, f f, f f, f,
DLMT Solution 537 1266 1642 2532 2801 3798 4001
FEM Solution 538 1287 1651 2574 2826 3860 4042
Error Percent
(FEM in respect to 0.186 1.659 0.548 1.659 0.893 1.632 1.025
DLMT)




