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Abstract 
In this paper, the application of distributed-lumped (hybrid) modeling technique (DLMT), as introduced by 
Whalley [1], is considered in modeling the forced longitudinal vibration of systems. To illustrate the 
simplicity and efficiency of the method, an industrial example of rotating shaft with a lumped element 
subjected to various longitudinal forces is analyzed. Natural frequencies obtained from this method are 
compared with those obtained by using finite element method. Also time responses of the system subjected to 
three different types of longitudinal forces are computed by this method. 
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1. Introduction 
The question of vibration model of industrial 
systems, especially rotating shafts, is the basic 
consideration in engineering design of dynamic 
systems. Not only the avoidance from natural 
frequencies of such systems have been observed 
since long before, but the condition monitoring 
(CM) of highly sensitive and precious plants such as 
turbines are applied widely using accurate vibration 
model of systems. Condition Monitoring for rotating 
machinery incorporates a wide range of techniques, 
such as oil analysis, wear-debris analysis, ultrasonic, 
corrosion, and vibration analysis. Vibration 
condition monitoring is, arguably, the oldest type of 
machinery condition monitoring. Measured 
vibration signals can reveal important and detailed 
information about possible fault which may exist in 
a machine [2]. Fault identification in rotating 
machinery using vibration analysis is a constantly 
expanding field. Developments are continually made 
with the use of new analysis methods, increased 
computing power, measurement techniques, and so 
on. 
Among different methods of modeling systems such 
as lumped-lumped modeling technique (LLMT) and 
distributed-lumped modeling technique (DLMT), or 

numerical and approximate methods such as transfer 
matrix method (TMM) and finite element method 
(FEM), it is clear that the model combined with both 
the distributed and lumped elements is the best 
representative of complex and accurate systems. 
Many industrial systems can be modeled as a 
rotating shaft with disks on it, such as gear systems, 
propellers, pumps, turbines, mills, etc. In such 
systems, the disks, which is the representative of 
blades, gears, etc., is impressed by different loads, 
which affect the vibration of system and lead to 
different frequency and time responses. Comparison 
between safe and defected system responses brings 
us an effective and advantageous method to the 
condition monitoring of expensive and important 
systems such as turbines. 
In this study, for a simple example, the longitudinal 
vibration of a general two–stage distributed-lumped-
distributed system is considered. The system is 
modeled by distributed-lumped technique, and the 
natural frequencies are investigated for two sets of 
boundary conditions (B.C.’s): clamped-free and 
clamped-clamped shaft, which are more common in 
real systems. To check the correctness and accuracy 
of the present method, the natural frequencies and 
mode shapes of an industrial example of the system 
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achieved from this method are compared with those 
obtained by utilizing the commercial finite element 
package of ANSYS, revision 7. The frequency 
responses are computed in response to the limited 
step, limited ramp, and delta force functions, using 
hybrid model of the system for clamped-free shaft. 
Time responses are also calculated employing the 
inverse Fourier transform (IFT) and convolution 
integral together. 
 
2. The General Distributed-Lumped 
Model 
Generally speaking, hybrid modeling technique 
deals with systems by dividing them into two 
element types. 

1) The distributed element, which is the main 
part of shafts, rotors or any other 
continuous part of the systems with 
distributed mass or inertia. 

2) The lumped element which is the 
supplementary part of shafts, rotors, etc. 
with concentrated mass or inertia such as 
disks, gears, propellers, pulleys, and so on. 

In this way, a system is considered as a combined 
set of distributed and lumped elements, in which the 
vibration of final model is obtained by setting the 
distributed and lumped matrices of different parts 
and combining them together (see Fig. 1). 
Distributed and lumped matrices are formed 
according to the analytical equations of motion, so 
this is the highly accurate method in contrast with 
other approximate methods such as transfer matrix 
method, finite element method, and so on. Another 
advantage of this method compare with analytical 
method is that the continuity conditions between 
distributed and lumped elements are identically 
satisfied and it remains only to satisfy the boundary 
conditions of the system. To this end, there is no 
difficulty in using this approach for analyzing 
systems with mixed series of distributed and lumped 
elements as shown by Barlett et al. [3].  
 
2.1. Deriving Transfer matrix for 
Distributed Element 
The equations of motion for longitudinal vibration of 
a thin rod with the density ρ  and the modulus of 
elasticity E can be expressed by the following 
equations (e.g., see [4,5]): 
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where u(x,t) and p(x,t) are the displacement and 
internal force functions, x is the distance along a 
section and t is time. 

Differentiating equation (2) with respect to x and 
substituting for xp ∂∂  in equation (1) yields: 
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Substituting equation (4) into (5) results in: 
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Equations (3) and (6) are the main equations of 
longitudinal vibration. Next, assuming zero initial 
conditions, Laplace transformation of equations (6) 
and (3) gives: 
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where s is the Laplace transform variable. Equations 
(7) can be written in compact form as: 
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The general solution of equation (8) is given by: 
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The unknown constants of integration A and D are 
obtained by imposing the boundary conditions at 
x=0. That is, 
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Next, it remains to find B and C in equations (12). 
Differentiating equation (12) with respect to x and 
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substituting for xp ∂∂  and xu ∂∂  from Laplace 
transformation of equations (1) and (2), respectively, 
gives: 
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Now putting x=0 in equations (14) results in: 

),0(1),0(1
),0(),0(

spsp
EsA

C

susuEsAB

ξρ

ξρ

==

==
 (15) 

Hence, the solution of equations (7) for the jth 
element can be expressed in matrix form as: 
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According to Fig. 1, for the jth element at x=0 
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2.2. Deriving Transfer Matrix for 
Lumped Element 
The equation of motion and continuity conditions in 
Laplace domain of the jth lumped element, which is 
exposed to the applied force f in the x-direction are 
written as: 
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Therefore, equation (17) can be expressed in the 
matrix form as: 
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3. Illustrative Example 
In this section, the methodology outlined previously 
is applied to a shaft with a disk on its middle (see 
Fig. 2), which is a simplified model for very useful 
and common industrial systems. The specifications 
of the system considered here are shown in Table 1. 
As mentioned already, the present method can be 
used for analyzing systems with any number of 
distributed and lumped elements without any 
increasing in difficulty.  
 

3.1. DLMT Solution 
To represent the main hybrid model of the system, it 
should be noticed that the system is combined of 
two distributed and one lumped elements (Fig. 3). 
For the distributed elements 1 and 3 the transfer 
matrices can be written according to equation (16) 
as: 
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Also the transfer matrix for the lumped element is: 
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Substituting equations (19) into (21) yields [6,7]: 
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Equation (23) may be shown in the simple form as: 
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Equation (24) is the transfer matrix of the overall 
system relating axial forces and axial displacements 
of the left and right end of the system. 
The Laplace transform variable ‘s’, in general, is the 
representative of equation ωσ is += ; in which the 
real part ( )σ  shows damping, and the imaginary 
part ( )iω  shows vibrating frequency. It is assumed 
in the present example that 0=σ  and, therefore, 
equation (24) will be altered from Laplace domain 
into frequency domain by putting ωis =  [6].  
For each sets of boundary conditions one 
characteristic equation can be obtained that its 
solutions will give the natural frequencies of the 
system. In what follows, a rotating shaft with a 
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lumped mass on it with two different boundary 
conditions will be considered. 
 
3.1.1. Clamped-Free System 
Assuming that the shaft is clamped at the position 
zero, and free at the position 3, the boundary 
conditions will be (see Fig. 2): 
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According to the above relations, equation (24) can 
be arranged as: 
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where 0u , 3p , and f are the inputs and 3u  and 0p  
are the outputs of the system. 
In this case, the natural frequencies are obtained by 
plotting fu3 , for instance, as shown in Fig. 4. In 
this view, the natural frequencies occur at the peaks 
of the spectrum. From equation (27), it is clear that 
the peaks are the result of denominator approaching 
zero. Since in all relations 11C  is the denominator, 
so the natural frequencies are the roots of 11C . 
Other than that, putting the relations (26) in equation 
(24), and neglecting the term coincides with f 
(because the natural frequencies are independent of 
applied force) gives: 
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The first equation satisfies when 011 =C , which is 
another reason for computing the roots of 11C  to 
find the natural frequencies as well. The results for 
this case are listed in Table 2. 
 
3.1.2. Clamped-Clamped System 
In this case, the boundary conditions are expressed 
as: 
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Hence, equation (24) can be arranged as: 
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where 0u , 3u , and f are the inputs and 3p  and 0p  
are the outputs of system. The natural frequencies 
are obtained by plotting fp3 , for instance, as 
shown in Fig. 5. Similar to the discussion presented 
in the previous part, the roots of 21C  should be 

computed in this case. The results for this case are 
listed in Table 3. 
 
3.2. FEM Solution 
To contrast and confirm the results with another 
method, the finite element method is used to 
investigate the natural frequencies. The system is 
modeled by ANSYS (7) software, and meshed using 
brick 45 (8 nodes 3D) elements. Block Lanczos 
solver of ANSYS is used in the analysis. The natural 
frequencies are listed in Tables 2 and 3. Also the 
first two mode shapes for clamped-free and 
clamped-clamped boundary conditions are shown in 
Figs. 6-9. 
 
3.3. Frequency and Time Responses 
Since the rotor systems are usually subjected to 
different external forces, the effect of three 
important types of forces on a clamped-free shaft is 
investigated.  
To acquire the frequency response, three types of 
applied forces (limited step, limited ramp and 
impulse functions) in Laplace form are substituted 
into equation (24). These three types of forces are 
shown in Figs. 10-12.  The frequency responses for 

3u  and 0p  showed that these parameters tend to 
infinity at the natural frequencies. Also the disk 
displacement can be obtained through equation (21). 
For the sake of brevity, however, theses parameters 
are not presented here. 
To compute the time response, both the inverse 
Fourier transform and convolution integral are used 
together. Firstly, the inverse Fourier transform 
which is expressed as [8]: 
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is used to find the time response of system to the 
unit impulse (without delay). In equation (31), )(ωx  
is fp0 , fu3  or fu1  which are obtained 
from equations (27) or (21). Since the referred 
functions are complex, the integral relation can be 
expressed numerically as: 
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In equations (33) )( rA ω  and )( rB ω  are the real and 
imaginary parts of function )(ωx , respectively. 
Secondly, the convolution integral that is expressed 
in the form: 
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is used to compute time response of the system to 
the forces mentioned before. In equation (34), )(ξf  
is the force defined in the form of matrix, and the 
whole relation can be computed numerically (for 
example, by using MATLAB software function 
‘conv’ [9]). 
Figs. 13-15 show the dynamic response of 1u , 3u , 
and 0p  respectively. It is seen that the first part of 
the spectrum has zero quantity, as the force is equal 
to zero (no force). However, the second part shows 
vibration, in which the amount is two times bigger 
in response to limited step contrasting with limited 
ramp, as it is expected. Also the third part shows 
vibration after finishing force, and the altitude of 
vibration is related to the situation that force comes 
to an end. 
 
4. Conclusions 
This paper shows how the DLMT can be used to 
analyze a complex vibrating system for investigating 
natural frequencies, time and frequency responses. 
The frequencies computed by DLMT are compared 
with FEM results, in two cases, and as it is shown in 
Tables 2 and 3 the two methods are differed less 
than two percent, which confirms the DLMT results. 
Since the equations of motion are solved exactly in 
DLMT, the achieved results are in high accuracy. 
It is also shown that DLMT can be used to compute 
the frequency and time responses to different forces, 
and the model can be set to include the force effects 
on the system efficiently. 
The DLMT can be used for other kind of vibrations, 
say, torsional and transverse vibrations. Also the 
present method is straightforward and general and 
can readily be used in developing a more advanced 
theory such as vibration of Timoshenko’s beams.  
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Figures and Tables 

 
 

Fig. 1 - General series representation of a distributed lumped parameter system (Hybrid Model) 
 

Fig. 2 – General model of rotating rotor system  

 

Fig. 3 – Hybrid model of rotating rotor system  
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Fig. 4 – Frequency spectrum for clamped-free 
B.C.’s ( 3u vs. )/( sradω ) 
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Fig. 5 – Frequency spectrum for clamped-

clamped B.C.’s ( 1u vs. )/( sradω ) 
 

 
 

Fig. 6 – 1st mode shape for clamped-free 
B. C.’s 

 
 
 
 
 
 
 

 

 
 

Fig. 7 – 2nd mode shape for clamped-free 
B. C.’s 

 

 
 

Fig. 8–1st mode shape for clamped-clamped 
B.C.’s 

 

 
 

Fig. 9–2nd mode shape for clamped-clamped 
B.C.’s 
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Fig. 10 - Delta force function 
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Fig. 11 - Step force function 
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Fig. 12 – Ramp-step force function 
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Fig. 13 - Time response of disk displacement 

under delta force function 
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Fig. 14 –Time response of end point 
displacement of shaft under step force function 
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Fig. 15 –Time response of force at the clamped 
point of shaft under ramp-step force function 
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Table 1 – Specifications of the system 
 

Shaft Length 2l 4 m 
Shaft Diameter shaftd  0.15 m 

Mass of Shaft per Unit Length m 137.837 kg 
Density of Shaft Material ρ  7800 3kg/m  

Modulus of Elasticity of Shaft E 200 GPa  

Shear Modulus of Shaft G 80 GPa  

Mass of Disk 100 kg 

Radius of Disk 1 m 

Moment of Inertia of Disk 50 2kg.m  

Disk Thickness 0.08 m 
 

Table 2 – Natural frequencies of clamped-free rotating system 
 

Frequency (Hz) 1f 2f  3f 4f 5f 6f 7f  
8f

DLMT Solution 290 875 1464 2064 2671 3285 3902 4523 

FEM Solution 292 881 1480 2085 2704 3321 3953 4572 
Error Percent 
(FEM in respect 

to DLMT) 
0.690 0.686 1.093 1.017 1.245 1.096 1.307 1.083 

 
Table 3 – Natural frequencies of clamped-clamped rotating system 

 
Frequency (Hz) 1f  2f 3f 4f 5f 6f  

7f
DLMT Solution 537 1266 1642 2532 2801 3798 4001 

FEM Solution 538 1287 1651 2574 2826 3860 4042 

Error Percent 
(FEM in respect to 

DLMT) 
0.186 1.659 0.548 1.659 0.893 1.632 1.025 

 


