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Abstract In this paper, within the displacement field of the first-order shear-thickness 
deformation theory (FSDT), transient vibrations of rectangular cross-ply composite plates are 
studied and dynamic interlaminar stresses are obtained. In the theoretical formulations the 
effects of all the rotational inertia terms are considered. Also the change in the plate thickness 
is taken into account due to its important role in the edge effects. The equations of motion are 
derived by using Hamilton’s principle. It is assumed that the plates have two simply 
supported opposite edges and the remaining boundary conditions are arbitrary. The obtained 
equations are solved analytically using Levy’s formulations, the orthogonality relation, and 
Laplace transform. The function of time is obtained using the results of free vibration and 
convolution integral. First, time responses are obtained for the case of transient vibration and 
then the interlaminar stresses are determined by integrating the three-dimensional local 
equations of motion and utilizing given boundary conditions. The accuracy and effectiveness 
of the present theory in describing the localized three-dimensional effects are demonstrated by 
comparing the results of the first-order theory with those obtained from the finite element 
method. 
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1. Introduction  
 

Laminated composite plates are being increasingly used in aeronautical and aerospace 
industry as well as in other fields of modern technology. As an efficient use a good 
understanding of their structural and dynamical behavior and also a verified consideration of 
the deformation characteristics, stress distribution, natural frequencies, and buckling loads 
under various load conditions are expected. Several representative researchers have surveyed 
the development of the study on free vibrations of composite laminated plates but the studies 
on forced vibration of composite plates are very limited. Ribeiro [1] studied the large 
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amplitude, geometrically nonlinear periodic vibrations of shear deformable composite 
laminated plates and found the mode shapes of vibrations. Onkar and Yadav [2], using basic 
analytical techniques, studied the nonlinear random vibration of a simply supported cross-ply 
laminated composite plate. To the extent of the author’s knowledge, no work has been 
reported for analysis of interlaminar stresses of laminated plates under forced vibrations. In 
this study, forced vibrations of multilayer composite plates are investigated based on first-
order shear-thickness deformation theory. In the theoretical formulations the effects of all the 
rotational inertia terms are considered. Also the change in the plate thickness is taken into 
account due to its important role in the edge effects. It is assumed that the plates have two 
simply supported opposite edges and there is no limitation for the remaining boundary 
conditions. Displacement components are separated as products of position and time 
functions. The function of position components of displacement is obtained in the form of 
Fourier series. Equations of free vibration of the plate are solved analytically using the state-
space approach. The function of time is obtained using the results of free vibration and 
convolution integral. 
 
 

2. Mathematical formulations  
 

It is intended here to determine the interlaminar stresses in a general cross-ply laminate 
subjected to transient vibration. The formulation is restricted to linear elastic material 
behavior and small strain and displacements. 

In order to approximate the three-dimensional elasticity problem to a two-
dimensional plate problem, the displacement components ( )tzyxu ,,,1 , ( )tzyxu ,,,2 , and 

( )tzyxu ,,,3  at any point in the plate space are expanded in a Taylor’s series in terms of 

thickness coordinate. The elasticity solution indicates that the transverse shear stress vary 
parabolically through the plate thickness. This requires the use of shear correction factors for 
theories with constant transverse shear stresses. The displacement field which satisfies the 
above criteria may be assumed in the form 
 

       1( , , , ) ( , , ) ( , , )xu x y z t u x y t z x y tψ= + ,   2 ( , , , ) ( , , ) ( , , )yu x y z t v x y t z x y tψ= +  
       3 ( , , , ) ( , , ) ( , , )zu x y z t w x y t z x y tψ= +  (1) 
 
where 1u , 2u , and 3u  are the displacement components in the x, y, and z directions 

respectively, u and v are the in-plane displacements and w is the transverse displacement of a 
point (x, y) on the middle plane. The functions xψ  and yψ  are the rotations of a normal 

transverse to the middle plane about y- and x-axes respectively and zψ  is the thickness change 

parameter.  
By substituting the displacement field in (1) into the strain-displacement relations [3] 

of elasticity, the following results will be obtained 
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The displacement field in Eqs. (1) can be used to drive the governing equation of 
motion by means of Hamilton’s principal. The Hamilton principle for an elastic body is [4]  

 

( ) 0
2

1

=−+∫
t

t
dtTVU δδδ  (3) 

 

where Uδ is the variation of the total strain energy, Vδ is the variation of the potential energy 
of the applied forces on the external surfaces of the plate, and Tδ is the variation of the total 
kinetic energy. Using Eq. (3) the governing equations of motions (Euler-Lagrange equations) 
are obtained as follows  
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In Eqs. (5) xN , yN , zN , xyN , xM , yM , and xyM  are the stress resultants and xQ  and yQ  are 

the transverse shear force resultants, and 1I , 2I , and 3I  are the corresponding mass terms. The 

linear constitutive relations for the kth orthotropic lamina, with fiber orientations of 0○ and 
90○ only, with respect to the laminate coordinate axes are given by [5] 
 

{ }( ) [ ]( ){ }( )ckk C εσ =  (6) 
 

where the matrix  [ ]C  is called the off-axis stiffness matrix. By substituting Eqs. (2) into Eq. 
(6) and the subsequent results into Eqs. (4), the governing (i.e. displacement) equations of 
motion are obtained.  
 
 
3. Analytical solutions 
 

Here the exact solution of Eqs. (4) for cross-ply rectangular plates are developed. The process 
of solving the governing differential equations consists of Levy’s formulations [5]. Levy's 
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solution exists when at least two opposite edges of the plate have simple supports. To this 
end, it is assumed here that the edges of the plate (for the case of cross-ply laminate) at x=0 
and x=a have the following boundary conditions 
 
                    0x x y zN v M wψ ψ= = = = = =  (7) 
 

It is noted that the boundary conditions in (7) will identically be satisfied if the following 
expressions for the displacement components are assumed 
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where m m aα π=  with m being the Fourier integer and mnU , mnV , … are the eigenfunctions 

in free vibration analysis. The function ( )tnΩ  is known as the generalized displacement 

coordinate and can be obtained by using the orthogonality relation as below 
 

( ) ( ) ( ) ( ) ( )
0

1 10 cos 0 sin sin
t mn

n n n n n n
n n mn

Q
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N
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ω ω ω τ τ
ω ω
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where mnN  is the generalized mass term and is defined as follows 

 

( ) ( ) ( )[ ]dyIWVUIWVUIN
b

b
zmnymnxmnmnzmnmnymnmnxmnmnmnmnmn ∫− Ψ+Ψ+Ψ+Ψ+Ψ+Ψ+++= 222

32
222

1 2  (10)

 
 
4. Numerical results and discussion 
 

In the present paper, several numerical examples are studied for symmetric and antisymmetric 
cross-ply laminates subjected to transient vibration. The laminates have length a=0.1 m, 
width b, and thickness h=0.01 m with aspect ratio a/b=1. Each lamina is assumed to be of the 
same thickness /kh h N= , where N is the number of laminae and the following lamina 

properties are used in all numerical examples, 1 2/E E = open, 2 3E E= , 12 13 20.6G G E= = , 

23 20.5G E= , 12 13 23 0.25ν ν ν= = = . It is assumed that the plate is subjected to a uniform 

transverse pressure during the time t=0.2 ms.  
Fig. 1 shows the distributions of interlaminar shear stress yzσ  through the y direction 

in an antisymmetric [0/90]2 SSSC cross-ply laminate subjected to pressure 0.1 kPa. Fig 2 
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presents the time history of interlaminar shear stress yzσ  of a [0/90/0] SSSC laminate at 

x=a/3, z=h/3, and various values of the width coordinate (y). The applied pressure is 0.2 kPa. 
All stress distributions in Figs. 1 and 2 are compared with the finite element analysis (FEA) 
and excellent agreements between the FSDT and FEA are found. 
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Fig. 1 Distributions of interlaminar shear 
stress yzσ  through the y direction of a [0/90]2 
SSSC cross-ply laminate 

Fig. 2 Time history of the interlaminar shear 
stress yzσ  at z=h/3 of a [0/90/0] SSSC cross-
ply laminate 

 
Fig. 3 demonstrates the time history of interlaminar normal stress zσ  of symmetric 

SCSC cross-ply laminates at x=a/2, y=b/4, and z=h/3 for two different configurations. It 
confirms that the [0/90/0] laminate has greater maximum interlaminar normal stress zσ  than 

that [90/0/90] laminate when the applied pressure is 0.5 kPa. Fig. 4 presents the distributions 
of interlaminar normal stress zσ  of fully simply supported cross-ply laminates subjected to 

pressure 0.2 kPa at x=a/3, z=h/3, and various values of the a/h ratio. It is seen that as the a/h 
ratio is increased, the numerical value of normal interlaminar stress zσ  is also increased. 
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Fig. 3 Time history of interlaminar normal 
stress zσ  of SCSC cross-ply laminates 

Fig. 4 Distributions of interlaminar normal 
stress zσ  of fully simply supported [0/90/0] 
cross-ply laminates 

 
Fig. 5 illustrates the time history of in-plane normal stress xσ  at y=b/4, z=h/3, and 

various values of the length coordinate (x) of a fully simply supported [0/90] antisymmetric 
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laminate subjected to pressure 0.5 kPa. The magnitude of xσ  is naturally increasing when 

approaching the middle of the plate. Fig. 6 presents the time history of interlaminar normal 
stress zσ  at x=a/10, y=b/4, z=h/3, and various values of the E1/E2 ratio. As the E1/E2 ratio is 

increased, the numerical value of interlaminar normal stress zσ  is decreased.  
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Fig. 5 Time history of in-plane normal stress 
xσ  for fully simply supported [0/90] 

laminate  

Fig. 6 Time history of interlaminar normal 
stress zσ  for SFSF [90/0/90] laminate  

 
 

5. Conclusions 
 
In this paper, an analytical method is developed to calculate the response and distribution of 
dynamic interlaminar stresses in composite laminated plates with two opposite simply 
supported edges, subjected to transient vibration. The equations of motion are derived by 
using Hamilton’s principle. The obtained equations are solved analytically using Levy’s 
formulations, the orthogonality relation, and Laplace transform. It is found that the present 
results have excellent agreements with those obtained by using finite element method. These 
close agreements verify the accuracy of the first-order shear-thickness theory which is used in 
this case study.  
  
References 
 

1. Ribeiro, P.: Forced periodic vibrations of laminated composite plates by a p-version, first 
order shear deformation, finite element. Compos. Sci. and Tech. 66, 1844–1856 (2006)  

2. Onkar, A. K., Yadav, D.: Forced nonlinear vibration of laminated composite plates with 
random material properties. Compos. Struct. 70, 334–342 (2005) 

3. Fung, Y.C.: Foundations of solid mechanics. Englewood Cliffs, NJ: Prentice-Hall (1965) 
4. Reddy J.N.: Energy and variational methods in applied mechanics. New York: Wiley 

(1984) 
5. Reddy J.N.: Mechanics of laminated composite plates: theory and analysis. New York: 

CRC Press (1997) 
6. Kreszing, E.: Advanced engineering mathematics. New York:  Wiley (1983) 


