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Abstract: In empirical engineering projects on reliability testing, replacement strategy, spares for repair and
reliability growth, the Mean Residual Life (MRL) function may be more relevant than the hazard function or
failure time distribution function, although they are mathematically equivalent. However, for modeling purposes,
MRL and the hazard functions play somewhat different roles. The MRL summarizes the entire residual life
distribution of time t and the hazard function only relates to the risk of immediate failure at time t. When the
main concern s the risk of immediate failure, the Proportional Hazards (PH) model has proved to be an extremely
useful model. Yet, it may not be the most appropriate model when one is concerned with the remaining lifetime
of an individual part at time t as in replacement and repair models. In this study, a new accelerated life testing
model based on the Proportional MRL (PMRL) model in the presence of more than one failure mode 1s
presented and its applicability in empirical reliability engineering is shown. The model can provide accurate
reliability estimates for multiple failure modes problems and is a useful alternative to the Accelerated Failure
Time (AFT) and the PH models. In some cases, our model is even better than the PH model.

Key words: Reliability, accelerated life test, proportional mean residual life, multiple failure modes, maximum
likelihood estimation, sum of squared errors

INTRODUCTION

In Accelerated Life Tests (ALT), products are
exposed to higher stress conditions (e.g., higher voltage,
pressure, or temperature) to produce failures earlier than
at typical conditions.

Acceleration n lab tests 1s justified because products
are expected to survive a considerable length of time (e.g.,
months, years, decades) under typical operating
conditions. A model is then fit to the data collected and
the results are used to estimate quantities of interest, e.g.,
quantiles and hazard rates at use conditions through
extrapolation. The first important step in accelerated life
testing 1s to determine a test plan given constraints such
as maximum test duration and test umt availability. In
general, this involves specifying at what levels to test
(e.g. temperature settings) and how many units to test at
each level.

The mference procedures (or models) are classified
into three types: statistics based models. Physics-
statistics based models and physics-experimental based
models (Pham, 2003). Furthermore, the statistics-based
models are classified into two categories parametric and
non-parametric models. Parametric models that are based
on AFT assumption, assume that the failure time data
follow a distribution such as exponential or Weibull. It 1s

also assumed that the failure times at different stress
levels are linearly related to each other. Moreover, the
failure time distribution at stress level s, 13 expected to be
the same at different stress levels s,.s.,... as well as
under normal operating conditions. Tn other words, the
shape parameters of the distributions are the same for all
stress levels (including normal conditions), but the scale
parameters may be different. Thus, the relationship
between the operating conditions and stress conditions
is:

A(t:z) :KO(eBZt)eBZ (1)

where, A(t,z) is the hazard function at time t and stress
vector 7, Ay(t) is the baseline hazard rate function; and
P is the coefficient of stress covariate Z (Sarhan,
2007).

In the non-parametric models there is no assumption
of the failure time distribution, i.e. no predetermined failure
time distribution 1s required. Cox (1972) proportional
hazards (PH) model 1s the most widely used among the
non-parametric models. Tt is expressed as:

Atiz) = ho(t)exp|pz] = Ko(t)exp{ .gl E’J'ZJ} @
J:

Corresponding Author: Ali Peiravi, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Tran
4166



J. Applied Sci., 8 (22): 4166-4172, 2008

where, z= (z,,7,Y,z,) is a column vector of the covariates
(or applied stresses), b = (B,B,...p,)is a column vector of
the unknown ceefficients and A,(t) is the baseline hazard
rate function.

The PH model implies that A(t; z,) is directly
proportional to A(t; z). This is the so-called PH model’s
hazard rate proportionality assumption.

If the proportionality assumption is violated and
there are one or more covariates that totally occur on g
levels, a simple extension of the PH model is stratification
(Kalbfleisch and Prentice, 2002), as given below:

itz =hg(Dexplpzl  j=1....q (3)

A partial likelihood function can be obtained for each
of the g strata and P is estimated by maximizing the
multiplication of the partial likelihood of the q strata. The
baselme hazard rate Ay (t), estimated as before, 1s
completely unrelated among the strata. This model is most
useful when the covariate is categorical and of no direct
nterest.

Another extension of the PH model mcludes the use
of time-dependent covariates. Kalbfleisch and Prentice
(2002) classified the time-dependent covariates as internal
and external. An internal covariate 1s the output of a
stochastic process generated by the unit under study and
can be observed as long as the unit swvives and is
uncensored. An external covariate has a fixed value or is
defined in advance for each umt under study.

Many other extensions exist m the literature
(Pham, 2003). However, one of the most generalized
extensions is the extended linear hazard regression model
proposed by Elsayed et al. (2006). Both accelerated failure
time model and PH model are indeed special cases of the
generalized model, whose hazard function is:

MEZ) = lo{te(ﬁu +B1t)l}e(“u toyt)z (4

where, A(t; z) is the hazard rate at time t and stress vector
Z, A($) 15 the baseline hazard function; and Py, B, o, o,
are constants. This model has been validated through
extensive  experimentation and simulation testing
(Pham, 2003).

All the above models are based on failure-rates
proportionality and failure-times proportionality. Oakes
and Dasu (1990) originally proposed the concept of the
proportional mean residual life (PMRL) by analogy with
Cox (1972) PH model. The concept of MRL 1s based on
conditional expectations and has been of much interest in
actuarial science, survival studies and reliability theory. ITn
the last two decades, however, reliability engmeers,

statisticians and others have shown increasing interest in
the MRI and derived many useful results.

Two distributions with reliability functions R; and R
are said to have proportional MRL functions if, for some
0 =0, e(t) = Oe,(t), ¥t where, e(t) 1s the mean residual life
under accelerated conditions, 0 is a constant and e(t) is
the mean residual life under normal conditions.

In reliability studies of repair and replacement
strategies, the MRL fimction may be more relevant than
the hazard function or failure time distribution function,
although they are mathematically equivalent, that 15 by
knowing one, the other can be determined:

MO =1+€(0/elt) (5)

However, for modeling purposes, MRL and the
hazard function play slightly different roles. The former
summarizes the entire residual life distribution of time t
and the latter only the risk of immediate failure at time t. It
1s possible for the MRL function to exist, but for the
failure rate function not to exist (e.g., the standard Cantor
ternary function), although sometimes it is possible for
the failure rate function to exist but the MRL function not
to exist. For example,

f@-2/n0+ ) for 20 (6)

When, the main concemn 1s the risk of inmediate
failure, the proportional hazards model has proved to be
extremely useful. However, it may not be the most
appropriate model when one is concerned with the
remaining lifetime of an individual at time t. In this case,
when the ALT model 13 developed based on the PMRL, 1t
will provide a useful alternative to the standard models for
ALT, which includes the accelerated failure model and the
proportional hazards.

Let X = 0 be a continuous random variable with
reliability function R(x) and finite expectation p. The MRT.
15 defined to be:

e(X)=E(X—-x|X>x)

- " ™
) L Rads L wef(uydu B

R(x) RO

Gupta and Kirmani (1998) presented details of the
implications of the PMRL and Zhao and Elsayed
(2005a, b) modeled an accelerated life test based on mean
residual life.

Chen et al. (2005) presented a semiparametric
estimation of the Proportional Mean Residual Life model
in the presence of censoring. In this study, an approach
to ALT plenmng when product failure 1s caused by two or
more failure modes 1s presented.
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The problem of multiple failure modes encompasses
the study of any failure process n which there 1s more
than one distinct cause or type of failure (Balasooriya and
Low, 2004; Zhang and Elsayed, 2006; Kundu and Sarhan,
2006). This 18 very mnportant and should be considered in
reliability studies. The problem may be described as
follows:

For a given unit, let T, be a random variable with
cumulative distribution function F(t), 1 =11,2,..., k}, where
k is the number of failure modes or types. Tt is assumed
that the T, 's are not observable and only the time of
failure, T > 0, T = min(T,, T, ... , Ty) and the cause of the
failure, ), among a fiite set of possible causes, say
1 € {1,2, ..., k}, which may be censored may be observed.
A regression vector z may also be available to record
of the under study subject.
compoenents of z may be time dependent, that 15 z = =(t).
For the accelerated life testing problem with multiple
failure modes, a set of covariates z can also be observed
to reflect the characteristics of the tested components, for
example, the conditions that the
components experienced in the test.

However, existing reliability methods for multiple
failure mode problems deal only with products operating
at normal conditions subject to hard (catastrophic)

characteristics Some

environmental

failures, which imply abrupt and complete cessation of the
product’s function.

NONPARAMETRIC APPROACHES WITH
MULTIPLE FAILURE MODES PROBLEM

The analysis of failure data with applied stresses at
accelerated conditions often involves complex and not
well-known shapes of time to failure distributions. To
avoid making additional assumptions that would be
difficult to test, nonparametric regression models appear
to be more attractive than the parametric ones which
assume a specific distribution. Further contributions on
the subject are given m Kalbfleisch and Prentice (2002)
and Park (2005).

Consider mference on the relationship between
cause-specific hazard fimections and regression vectors or
function z For example, proportional hazards modeling in
which the cause-specific hazard function at time t
depends on z only in terms of the concurrent value z(t) is:

M2 = hojexp[Biz®],  j=1,..m &)

Both the shape functions A4, and regression
coefficients P, have been permitted to vary arbitrarily over
the m failure types.

Let t; <. < t;; denote the time of k; failures of type j,
7=1,Y, mand let Z; be the regression function for the
individual that fails at t;. The methed of partial likelihood

then gives:

LBy -...fy) =
[l s v
=l i=l 2 explB iz (t5)]

leR(t;)

Estimation and comparison of the (/s can be
conducted by applying standard asymptotic likelihood
techniques individually to the m factors. The functions
R{t; z) can be estimated at specified 7 upon inserting
the maximum likelithood estimators from the above
corresponding  estimators of the
incidence obtained simply by

Equation.  The
cumulative can be
inserting  the appropriate estimators for R and A

functions.

Litz)=PF(T<tI=jZ)=

¢ (10)
J. ?»j(u;z)R(u;z)du, j=L...m
0

The cause-specific hazard finctions  could
similarly be modeled using an accelerated failure time

model:

AitZ) =

(11)
)"oj {teBJZ(t) }eBJZ(t) . j=1..m

It would be necessary to restrict the covariate to be
fixed or a step function in order to preserve the
multiplicative relationship between covariates and failure
time.

PMRL MODEL AND STATISTICAL INFERENCE
FOR MULTIPLE FAILURE MODES

Two distributions with reliability functions R, and R
and with mean residual lives at time x of e(x) and ¢,(x),
respectively, are said to have proportional MRIT
functions, if they are related as follows:

e(X)=0gp(x), W¥X,0>0 (12)

therefore:
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R(x,8)= %exp[.'.m %J

. = (13)
J' Ry(u)du
=Ro(x)| "5
(1]
Where:
1, = e,(0)

It is assumed that there are more than one
independent failure modes. That is, time to failure is
viewed as the mimmum of p latent failure times. Here only
two failure modes are considered. The procedure is similar
for the cases with p failure modes.

Consider N components subjected to accelerated life
testing with an applied stress z The test 1s conducted
until all components fail, i.e., no censoring. A component
may fail in two failure modes: failure in mode 1 and failure
mmode 2.

The collected data from the test units with two failure
modes have three features:

*  Failure mode §,, 6,
+  Failure times T, T, respectively
U=min (T, T, (14)

(U,d) are observable.
T, and T, are independent.

+  Stress level(7)

then
Ry () =P(U>t)= Pmin{T}, T3} > t) =
P(Ty > 4, Ty > 0 = P(T} > OP(Ty > ) = (15
Ry(OR, (1)
and
AME =M O+ Ay (1)
£ =MORM,  £(8) =M OR (D), (16)
fa(ty=Ag (DR (L),
but
£() # (1) + £, (1)

From the assumptions, the likelihood function can be
represented as:

s 4166-4172, 2008

L=] T =] Joutto+rattin
i=1 i=1 (1 7)

exp {—I(}»l )+ Kz(u))du]
0

and
L= Infhy (1) A (1)) - EJ'(AI (+ Ay (wpda (18)
1 1 ¢

where, InL. 15 a function of A,(*), A,(-). We can maximize InL.
to estimate A,(%), A)-). Suppose A (), A() can be
represented by the PMRL model separately:

A (t2) = 610 (1) + exp(-fy 2)
et
7y 12y = 200+ CXPp3Z)
c20(0 (19)
A tz) = S0+ PRz
€0l
©20(t) + exXp(-P12)
€20 (D)

_® 0(0) 7i du
€jolt) expl .({exp(ﬁjz)ejo(u))

Rj(t;z)

Hej()(o) i du (20)
R {t;z)y=5=—— - Y ——
(t:2) [Teww exp( E(JCXP(BJ_Z)CJ_O(H)))
(0
@ L

[Teio®

Where:

E; - .[diu (21)

! exp(Bizie o ()

2
f(tz) = ZAj(t;z) R (t.2) (22)
=1

Substitute the specific form of e, e, mto the log
likelihood function and consider censoring, then we
have:
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L@ = [ [t 20 0] [RCe.2e.B2 =

Elnf(tu,zu,ﬁ)+E]nR(tc,zc,[3) = (23)

Eln(ixj(tu;zu) Rilyizy)) Y R (g 2)
1 c

c i=

Let’s only consider the scenario that there is no
censornng, thus the log likelihood function 1s as follows:

InL =
Stz A2 R (2} -

2 _e;u {t,) +exp(-fz,)
Zln —em(t‘) +
€, (L) +exp(—prz)
e, ()

& | et + exp(-fTz,)
Zln{_ L) +

T

} R,(t;z)}=
(24)

i

[1e,©
e

elzu(t) + Cxp(iﬁgzi) w i=t

2
20 | Tle,
=1
2
exp(-Y, E,)}
=
SIMULATION RESULTS

MATLAB was used for computer simulations to
demonstrate the use of the proportional mean residual life
model in modeling the failure times obtained from
accelerated life testing with multiple failure modes
inorder to show its applicability in the reliability field.

The exponential function was used as the baseline
function of the PMRL model in which there are 6 unknown
parameters, a, a, b, b, P, B, and the Baseline
exponential Function 1s:

ejo(t) = explaj + bit) (25)
substituting (25) in the PMRI model, we obtain:

e (t;z) = exp(a; + byt) exp(B;rz) (26)

In order to perform the simulation, four groups of
weibull distribution data with two failure modes and two
stress levels were generated. Then faillure times for

Table 1: Estimated parameters of the PMRI. model

Parameters Exponential optimal result
a 0.61352715321E+01
by -0.9832214161E-04
a, 0.69881089908E+01
by 0.11348666712E-03
[N -0.3662834323E-02
(B2 -0.137964537374E-02
\Webul Proozbilty Pl
083
0B
0Bd
0
05
£0%
3
804
[
0o
noz
0o
Girnss level: 1 Siress level: 2

Fig. 1: Generated data

two stress levels were extracted as shown in Fig. 1. The
MATLAB optimization toolbox was used for maximizing
L. Maximizing Inl, is equivalent to mimmizing (Inl). The
selection of the initial value is very important. For the
exponential baseline mean residual life case, the generated
data of failure modes 1 and 2 was fitted with the Weibull
model separately, then let the imtial value of the parameter
a, and a, in our model,

a = In{ MTTF) (27

B.. B. equal to zero in present model.

After generating the failure time data, the PH, the
Kaplan-Meier and the PMRL models were fitted to the
data. The estimated parameters are shown i Table 1
based on which this model can be used to estimate the
reliability at a specific stress level Figure 2 shows the
reliability estimation at stress level 2 for the PMRI model,
PH model and the true model.

Figure 3 shows the probability distribution function
(pdf) of the true model and the PMRIL model.

In Fig. 4, the PMRIL, model and the PH models are
compared with the Kapaln-Meier model and Fig. 5 shows
all models at stress level 1.
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Fig. 2: Rehability estimation at stress level 2 for the PMRL
Model, the PH Model and the true Model
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Fig. 3: Pdf of the true and PMRL model
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Fig. 4: Reliability estimation at stress level 2 for the PMRI,
model, the PH model and the K and M model

Figure 5 shows that the PMRI, model has better
results in modeling the data obtained from accelerated test
with multiple failure modes.

Table 2 shows the sum of squared error (SSE)
between PMRL estimates, true data and results obtained
from K and M model at stress level 1 and Table 3 shows
the same statistical measures at stress level 2. Based on
the results shown i1 Table 2 and 3, the PMRL model gives
very promising results, where the sum of squared error
between PH estimates and the observed data is 0.7141 and
the same statistical measure for PMRL model is
only 0.5037 at stress level 1 and the sum of squared

1.033,
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Fig. 5: Relability estimation at stress level 1 for the PMRL
model, the PH model, the true model and the K and
M model

Table 2: SSE for models at stress 1

Models SSE PMRL SSEPH
True 0.5037 0.7241
Kand M 0.2744 0.6432
Table 3: SSE for models at stress 2
Models SSE PMRL SSE PH
True 0.1925 0.3036
Kand M 0.0439 0.0590
Table 4: Goodness of fit for model

PMRL PH
Goodness of fit 64% 36%

errors at stress level 2 for the PH model and PMRL are
0.3036 and 0.1925. Therefore, the PMRL model 1s a useful
alternative model. In some cases, 1t 1s even better than the
PH model.

MODEL VERIFICATION

In order to compare the proposed model with the PH
model, 120 data sets distributed as Weibull were
generated each of which included four groups of Weibull
distribution data with different stress levels. After
generating the failure data, the PH model and the PMRL
model were fitted to the data and the sum of squared error
between model estimates and the observed data was
calculated, as shown i Table 4.

Based on this Table 4 are 77 data sets in which the
PMRL model provides a better estimate than the PH
model. These results show that the PMRL model provides
a useful alternative to the PH model and gives very
promising results.

Similar with the PH model, the PMRL model implies
that the ratio of the MRI. functions for any two units
associated with different vectors of covariates, z, and z,,
1s constant with respect to time. This means that e(t; z)
is directly proportional to e(t; z,). The PMRI model is a
valid model to analyze ALT data only when the data
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satisfy its proportional mean residual life assumption.
Therefore, it 13 very important to check the validity of the
PMRI. model and the assumption of the covariates’
multiplicative effect before applying it to the failure data.
Weibull distribution was used in this research to generate
data to satisfy this assumption.

CONCLUSIONS

In this study, a new accelerated life testing based on
Proportional Mean Residual Life model in the presence of
more than one failure mode is presented and its
applicability in reliability is shown. The model utilizes the
data at accelerated conditions to estimate the reliability
measures at normal operating conditions.

Moreover, the use of the PMRL that i3 modeled is
shown m modeling ALT's with multiple failire modes,
where exponential function is used to present the baseline
mean residual function. The average square error between
the PMRL model based on this baseline function and the
true data is very small. This means that the model can
provide accurate reliability estimates for multiple failure
mode problems and 15 a useful alternative to the
accelerated failure time (AFT) and the proportional
hazards (PH) models. In some cases, this model is even
better than the PH model.
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