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Many models have been developed to predict size-dependent melting temperature of nanoparticles.

A new model based on the cluster mean coordination number (MCN) calculations is developed in this

work. Results of the model for Al, Au, Pb, Ag, Cu, In, Sn, and Bi were compared with other models and

experiments. The comparison indicated that the MCN model is in good agreement with available

experimental values. It is also found that the melting temperature is more dependent on particle size as

the atomic radius increased.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Nanomaterials are experiencing rapid development in recent
years due to their known and/or potential applications in areas
such as electronics, catalysis, ceramics, magnetic data storage,
structural components, etc. Nanomaterials can be classified into
nanocrystalline materials and nanoparticles. The former are
polycrystalline bulk materials with grain sizes in the nanometer
range, while the latter refers to ultrafine dispersive particles with
diameters below 100 nm [1]. Parallel to developments in synth-
esis, processing, and application of nanomaterials, many re-
searches are accomplished to explain and predict their behavior.
In recent decades, researchers have paid more attention to the
melting of nanosolids, because the melting temperatures of
nanosolids are different from that of the corresponding bulk
materials. Generally, models that predict nanoparticle melting
temperature can be categorized into three groups according to
their theory:
(a)
 models developed in terms of classical thermodynamics and
surface energy [2–8],
(b)
 models based on molecular thermodynamics and atomic
mean square displacement (msd) [9–11], and
(c)
 models established on cohesive energy calculations of
particles [12–17].
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Liquid-drop model developed by Nanda et al. [13] is a model
based on cohesive energy calculations. In this model, the relation
between melting point and particle size is

Tmp ¼ Tmb 1�
b

zD

� �
(1)

where Tmp and Tmb are the melting temperature of the nanopar-
ticle and the corresponding bulk material. b can be estimated for
different elements using the known values of atomic volume, v0,
surface energy, s, and Tmb, via Eq. (2). It may be noted that z is the
dimensional factor and has values 1, 3/2, and 3 for nanoparticles,
nanowires, and thin films, respectively. D represents the diameter
in case of nanoparticles and nanowires, whereas it represents the
thickness in case of nanofilms.

b ¼
6v0

0:0005736

s
Tmb

� �
(2)

Xie et al. [15] have developed another model by calculating
surface-to-volume atomic ratio as a function of particle size. In
this model, according to molar cohesive energy of nanoparticles
and its linear relation with melting point, the following equation
is suggested:

Tmp ¼ Tmb 1�
3a
4

� �
(3)

where a is surface-to-volume atomic ratio. Apparently, the key to
calculate Tmp is to obtain a, which depends on the size and the
shape of the nanosolid and atomic radius, r0. Eq. (4) expresses a
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values for different nanosolids:

a ¼
4r0

D
ð3� dÞ (4)

where d is the dimension of crystal, d ¼ 0 for nanoparticle, d ¼ 1

for nanowire, and d ¼ 2 for nanofilm. D is the particle diameter,
wire diameter, or thickness of thin film.

In this work, a new concept of particle mean coordination
number (MCN) will be introduced and a new model (MCN model)
will be developed to calculate melting temperature of nanopar-
ticles with free surfaces. With the use of MCN calculations more
precise cohesive energy will be obtained for nanoparticles.
According to the relation between melting temperature and
cohesive energy, an expression for the size-dependent melting
Fig. 1. Some geometrical structures of clusters: (a) cubo-octahedron and (b)

icosahedron.

Table 1
Atomic parameters of a cluster with co, ico, bcc, and sc structure as a function of clust

Definition Notation Cluster structure

co

Total number of atoms N
10

n3

3
þ 5n2 þ 11

n

3
þ

Number of atoms in surface Ns 10n2 þ 2

Surface-to-volume atomic ratio NS

N
30n2 þ 6

10n3 þ 15n2 þ 11n

Total number of cluster atomic bonds Nc
b 20n3 þ 15n2 þ 7n

Number of surface debonds Ns
db 30n2 þ 30nþ 12

Total number of bulk atomic bonds Nb
b ¼ Nc

b þ
1
2Ns

db 20n3 þ 30n2 þ 22n

Surface effective debonds-to-bulk bonds ratio ð1=2ÞNs
db

Nb
b

9n2 þ 9nþ 3

10n3 þ 15n2 þ 11n

Cluster-to-bulk atomic bond ratio Nc
b

Nb
b

10n3 þ 6n2 þ 2n

10n3 þ 15n2 þ 11n

Bulk coordination number
Z ¼

2Nb
b

N

12

Cluster mean coordination number Z̄ ¼
2Nc

b

N

24nð5n2 þ 3nþ 1

10n3 þ 15n2 þ 11n

Cluster-to-bulk mean coordination number ratio Z̄

Z

2nð5n2 þ 3nþ 1

10n3 þ 15n2 þ 11n
temperature of nanoparticles will be developed. To confirm the
efficiency of our new model, predictions for Al, Au, Pb, Ag, Cu, In,
Sn, and Bi nanoparticles will be compared with the available
experimental values and other theoretical models.
2. Model

One of the most critical characteristics of nanoparticles is their
very high surface-to-volume ratio, i.e. large fractions of surface
atoms. When the concentration of building blocks (atoms or ions)
of a solid becomes sufficiently high, they aggregate into small
clusters through homogeneous nucleation. With continuous
supply of the building blocks, these clusters tend to coalesce
and grow to form a larger cluster assembly. Clusters are structures
with a central site around which the cluster is grown. The cluster
may be considered as an onion-like structure (non-spherical)
formed by several concentric shells around the central site. All the
surface sites, which may belong to various shells, are defined as
crusts. The number of crusts, n, defines the order of the cluster.
The zeroth order corresponds to the central site. The first-order
cluster is formed by adding a crust with a number of sites in such
a way that they cover the central site and form a surface with a
given geometrical shape such as cubo-octahedra (co), icosahedra
(ico), body-centered cubic (bcc), and simple cubic (sc) (Fig. 1) [18].
The second-order cluster is formed by adding a crust over the
first-order cluster, keeping the same geometrical shape as the
first-order cluster. Clusters of higher order are formed in a similar
way. Both co and ico clusters have close-packed structures; but in
the ico the nearest neighbors on the same crust are at a shorter
distance (5%) than those at adjacent crusts [18]. In addition to the
mentioned geometrical shapes, there is a rarely formed cluster
structure which is decahedra [1].
er order, n (based on [18])

ico bcc sc

1 10
n3

3
þ 5n2 þ 11

n

3
þ 1

ð2nþ 1Þðn2 þ nþ 1Þ ð2nþ 1Þ3

10n2 þ 2 6n2 þ 2 24n2 þ 2

þ 3

30n2 þ 6

10n3 þ 15n2 þ 11nþ 3

6n2 þ 2

ð2nþ 1Þðn2 þ nþ 1Þ

24n2 þ 2

ð2nþ 1Þ3

20n3 þ 12n2 þ 4n 8n3 24n3 þ 24n2 þ 6n

36n2 þ 36nþ 12 24n2 þ 24nþ 8 24n2 þ 24nþ 6

þ 6 20n3 þ 30n2 þ 22nþ 6 8n3 þ 12n2 þ 12nþ 4 24n3 þ 36n2 þ 18nþ 3

þ 3

15n2 þ 15nþ 6

20n3 þ 30n2 þ 22nþ 6

3n2 þ 3nþ 1

2n3 þ 3n2 þ 3nþ 1

4n2 þ 4nþ 1

8n3 þ 12n2 þ 6nþ 1

þ 3

20n3 þ 15n2 þ 7n

20n3 þ 30n2 þ 22nþ 6

2n3

2n3 þ 3n2 þ 3nþ 1

8n3 þ 8n2 þ 2n

8n3 þ 12n2 þ 6nþ 1

12 8 6

Þ

þ 3

6nð20n2 þ 15nþ 7Þ

10n3 þ 15n2 þ 11nþ 3

16n3

2n3 þ 3n2 þ 3nþ 1

12n

2nþ 1

Þ

þ 3

nð20n2 þ 15nþ 7Þ

20n3 þ 30n2 þ 22nþ 6

2n3

2n3 þ 3n2 þ 3nþ 1

2n

2nþ 1
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For most transition metal nanoparticles these distinct struc-
tures can occur, which are not characteristics of the bulk crystal
structure. Clusters with a small number of atoms (o150–200)
crystallize in the form of ico. The structure becomes unstable for a
large number of atoms and transforms to co, which is just a patch
of the face-centered cubic (fcc) lattice [18].

The number of sites in a crust increases with the order, n, in a
way that depends on the geometrical structure. There is a well-
defined series for the number of sites as a function of the order, n,
for each geometry. For co and ico clusters, the series are the same
and it is given by 13, 55, 147, 309, 561, etc. On the other hand, the
series for bcc and sc structures are 9, 35, 91, 189, etc. and 27, 125,
343, 729, etc. respectively [18]. It may be noted that we do not
consider clusters with vacancies or defects. The relation between
cluster order and its number of atoms is given in Table 1. Also
other cluster parameters that are used to develop current new
Fig. 2. Cluster mean coordination number as

Fig. 3. Cluster-to-bulk coordination number rati
model are shown in Table 1. Fig. 2 shows the variations of cluster
MCN versus total number of atoms, N. Clearly MCN declines by
reducing total number of atoms. Cluster-to-bulk coordination
number ratio for different cluster structures is presented as a
function of total number of atoms, N, in Fig. 3.

It is well known that both the cohesive energy and the melting
temperature are parameters to describe the bond strength of
materials. It is reported that the cohesive energy and melting
temperature may have some proportional relations [12,19].
Assuming Eb and Tmb as molar cohesive energy and bulk melting
point, following empirical relation of the melting temperature and
molar cohesive energy is reported [19]:

Tmb ¼
0:032

kB
Eb (5)
a function of total number of atoms, N.

o as a function of total number of atoms, N.



ARTICLE IN PRESS

M. Mirjalili, J. Vahdati-Khaki / Journal of Physics and Chemistry of Solids 69 (2008) 2116–2123 2119
where kB is Boltzmann’s constant. In the same way, the melting
point of a nanoparticle, Tmp, can be written as

Tmp ¼
0:032

kB
Ep (6)

where Ep is molar cohesive energy of nanoparticles atoms. The
bulk molar cohesive energy, Eb, equals NaE0, where Na is
Avogadro’s constant and E0 is the cohesive energy per atom of
the bulk material. Cohesive energy per atom is obtained by
multiplying coordination number, Z, by half of bonding energy, 1/2
Ebond, as each atomic bond is shared by two atoms:

Eb ¼ NaE0 ¼
1
2NaZEbond (7)

In the same way, molar cohesive energy of nanoparticles atoms
can be written as
Fig. 4. The relation between particle size, r, and the cluster order, n, for a cubo-

octahedral nanoparticle.

Fig. 5. Size-dependent melting point depression of Al nanoparticles versus reciprocal pa

the atomic radius as 0.143 nm. Bulk Al crystal structure is fcc [7,10,13–15,20–22].
Ep ¼
1

2
NaZ̄pEbond (8)

where Z̄p is the MCN of nanoparticles atoms. According to
Eqs. (5)–(8), Tmp can be rewritten as

Tmp ¼ Tmb
Z̄p

Z
(9)

Considering Table 1, for different cluster structures the ratio of
nanoparticles mean coordination number to bulk corresponding
value can be defined as below. For a sc cluster, the equation is

Z̄p

Z
¼

2n

2nþ 1
(10)

where n is the number of crusts (cluster order). On the other hand,
for a bcc cluster, the ratio can be described by

Z̄p

Z
¼

2n3

2n3 þ 3n2 þ 3nþ 1
(11)

In the same way, for an ico cluster we have

Z̄p

Z
¼

nð20n2 þ 15nþ 7Þ

20n3 þ 30n2 þ 22nþ 6
(12)

As mentioned, ico structure is not stable for a large number of
atoms and transforms to co. Therefore the most proper equation
that could be used for close-packed materials is the one that
corresponds to co clusters:

Z̄p

Z
¼

2nð5n2 þ 3nþ 1Þ

10n3 þ 15n2 þ 11nþ 3
(13)

As shown in Fig. 4, the relation between particle size, r, and the
number of crusts, n, could be deduced for a co nanoparticle by an
inductive reasoning:

r ¼ ð2nþ 1Þr0 (14)
rticle diameter, 1/D. The melting temperature of bulk Al was taken as 933.25 K and
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where r0 is atomic radius. Thus nanoparticle size-dependent
melting point can be described as follows:

Tmp ¼ Tmb
2nð5n2 þ 3nþ 1Þ

10n3 þ 15n2 þ 11nþ 3
; n ¼

1

2
ðr=r0 � 1Þ (15)

Ignoring the effect of curvature and surface relaxation,
the above equation can be used for spherical close-packed
nanoparticles with radius r. For non-close-packed nanoparticles
same equations could be developed in the same manner.
Fig. 6. Size-dependent melting point depression of Au nanoparticles versus reciprocal p

the atomic radius as 0.144 nm. Bulk Au crystal structure is fcc [3,7,10,13–15,23].

Fig. 7. Size-dependent melting point depression of Pb nanoparticles versus reciprocal p

the atomic radius as 0.175 nm. Bulk Pb crystal structure is fcc [5,7,10,13–15,24].
3. Model verification and discussion

The main advantage of MCN model is that there is no need to
know surface energies and other thermodynamic information. In
our model only atomic radius and bulk melting temperature are
needed for calculating nanoparticles melting point.

Size-dependant melting temperatures of Al, Au, Pb, Ag, Cu, In,
Sn, and Bi nanoparticles are shown in Figs. 5–12 in comparison
with some other models and experiments. The newly developed
article diameter, 1/D. The melting temperature of bulk Au was taken as 1337.6 K and

article diameter, 1/D. The melting temperature of bulk Pb was taken as 600.6 K and
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model is in good agreement with experimental values especially
for Al and Pb. As it is clear for Pb and Sn, when size of particles
decreases to diameters less than 20 nm, experimental values
indicate a deviation from linear behavior. It may be caused by
phenomena such as surface curvature, atomic relaxation, and
surface contaminations. There are papers [30] that give us ideas to
formulate surface relaxation effect on nanoparticles cohesive
energy and melting temperature. Considering these effects we can
improve our model to predict more accurately.
Fig. 8. Size-dependent melting point depression of Ag nanoparticles versus reciprocal p

the atomic radius as 0.144 nm. Bulk Ag crystal structure is fcc [7,10,13–15,23].

Fig. 9. Size-dependent melting point depression of Cu nanoparticles versus reciprocal pa

the atomic radius as 0.128 nm. Bulk Cu crystal structure is fcc [7,13–15].
It seems metallic clusters are generally formed in co structures
and they then transform into their bulk crystal structures as their
sizes grow. Therefore Eq. (15) could be used for most of the
metallic elements. Relevant equations for sc and bcc clusters can
be derived from Eqs. (10) and (11). As illustrated for non-close-
packed nanoparticles such as In and Sn, an acceptable prediction
of size-dependant melting point is obtained by using Eq. (15);
however, results for Bi are not so consistent with experimental
values.
article diameter, 1/D. The melting temperature of bulk Ag was taken as 1234 K and

rticle diameter, 1/D. The melting temperature of bulk Cu was taken as 1357.6 K and
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Fig. 10. Size-dependent melting point depression of In nanoparticles versus reciprocal particle diameter, 1/D. The melting temperature of bulk In was taken as 933.25 K and

the atomic radius as 0.166 nm. Bulk In crystal structure is tetragonal [7,10,13–15,20,25,26].

Fig. 11. Size-dependent melting point depression of Sn nanoparticles versus reciprocal particle diameter, 1/D. The melting temperature of bulk Sn was taken as 505.06 K and

the atomic radius as 0.162 nm. Bulk Sn crystal structure is tetragonal [7,10,13–15,27].

M. Mirjalili, J. Vahdati-Khaki / Journal of Physics and Chemistry of Solids 69 (2008) 2116–21232122
It is worth noting that according to MCN model (Eq. (15)) when
atomic radius increases, the size dependency of melting point
increases. Generally, according to this new model and other
similar models, the following simple equation can be expressed
for estimation of this dependency:

Tmp

Tmb
¼ 1�

k
D

(16)

where k is a constant depending on material and can be calcu-
lated from MCN model by a linear data fitting method. The
k magnitude reveals how much the melting point depends on
particle size. The estimated values of k for Al, Au, Pb, Ag, Cu, In, Sn,
and Bi are 0.513, 0.517, 0.627, 0.517, 0.460, 0.595, 0.581, and
0.609 nm, respectively. This indicate that increasing atomic radius
causes more size dependency of melting temperature. According
to Eqs. (1) and (2), k could be also used for the estimation of
surface energy, s. Considering Eq. (15), k value for MCN model is
approximately 1.8 D0, where D0 is the atomic diameter. On the
other hand, k values for liquid-drop model (Eq. (1)) and Xie et al.
model (Eq. (3)) equal b and 4.5 D0, respectively. Clearly MCN
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Fig. 12. Size-dependent melting point depression of Bi nanoparticles versus reciprocal particle diameter, 1/D. The melting temperature of bulk Bi was taken as 544.52 K and

the atomic radius as 0.170 nm. Bulk Bi crystal structure is rhombohedral [7,10,13–15,26,28,29].
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model indicates less dependency on particle size as illustrated in
Figs. 5–12.
4. Conclusions

In this work, a new model based on mean coordination number
(MCN model) calculations was developed for predicting size-
dependent melting point of nanoparticles. The model results for
Al, Au, Pb, Ag, Cu, In, Sn, and Bi nanoparticles show the efficiency
of this model in comparison with other models. According to MCN
model it was found that for elements with the same crystal
structure, size dependency of melting temperature increases with
atomic radius. Considering the importance of the melting
temperature of nanosolids, we are confident that the method
presented in this paper may have potential application in the
research on temperature-dependent properties of nanosolids.
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