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Abstract

The problem of estimation of the squared derivative of a probability density f is considered using
wavelet orthogonal bases. We obtain the precise asymptotic expression for the mean integrated error
of the wavelet estimators when the process is strongly mixing.
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1 Introduction

The motivation for estimation Id(f) =
∫
f (d)2(x)dx where f is a probability density and f (d) is the

d-th derivative is well known. Kernel-type estimation the functionalI2(f) has been investigated by Hall
and Marron(1987). and Bickel and Ritov(1988) among others. In Prakasa Roa(1996), we have studied
nonparametric estimation of the derivative of a density by wavelets and obtained a precise asymptotic
expression for the mean integrated squared error following techniques of Masry(1994). Estimation of
the integrated of squared density was discussed in Prakasa Roa(1997) by the method of wavelets and a
precise asymptotic expression for the mean squared error had been obtained. Prakasa Roa(1999) also
obtained the precise asymptotic expression integrated squared error of the wavelet estimators.
We now extend the result to the case of strongly mixing process . We show that the Lp error of the
proposed estimator attains the same rate as when the observations are independent. Certain week de-
pendence conditions are imposed to the xi defined in {Ω, N, P}.

Let Nm
k denote the σ-algebra generated by events Xk ∈ Ak, ..., Xm ∈ Am. We consider the following

classical mixing conditions:

1. Strong mixing (s.m) also called α-mixing:

sup sup |p(AB) − p(A)p(B)| = α(s) → 0 as s→ ∞

2. Complete regularity (c.r.), also called β-mixing:

supE{var|p(B|Nm
1 ) − p(B)|} = β(s) → 0 as s→ ∞

3. Uniformely strong mixing (u.s.m.), also called φ−mixing:

sup sup
|p(AB) − p(A)p(B)|

p(A)
= φ(s) → 0 as s→ ∞

4. ρ-mixing:
sup sup |corr(X,Y )| = ρ(s) → 0 as s→ ∞
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The problem of density estimation from dependent samples is often considered. For instance quadratic
losses were considered by Ango Nze and Doukhan(1993). Bosq (1995), Castella and Leadbetter(1998)
and Doukhan and Loen(1990).
Linear wavelet estimators were also used in context: Doukhan (1988) and doukhan and Loen(1990).
Leblance (1995)also established that the Lṕ -loss (2 ≤ ṕ < ∞) of the linear wavelet density estimators

for a stochastic process converges at the rate N
−s

(2s+1) (s = 1/p+ 1/ṕ), when the density of f belongs to
the Besov space Bs

p,ṕ. Dooti , Niroumand and Afshari (2006) extended the above result for derivative of
a density.

2 Discussion of Theorem’s Assumptions

Consider the following conditions:

C1:The distribution of (Xm, Xt) has a joint density fm,t such that for all m and t, m �= t

(
∫

|fm,t(x, y)|vdxdy)1/v = ‖fm,t(., .)‖ ≤ Fv <∞ forsome v > 2

M1:The process is ρ-mixing and
∑∞

t=1 ρ(t) ≤ R <∞.

M2:The process is φ-mixing and
∑∞

t=1 φ
1/2(t) ≤ φ <∞.

Since the inequality ρ(t) ≤ 2φ1/2(t) holds (see Doukhan 1994), M2 implies M1 . Also note that if X and
Y are random variables , then the following covariance inequalities hold.(see Doukhan , 1999, section 1.2.2)

cov(Xi, Yj) ≤ 2ρ(j − i)‖X‖2.‖Y ‖2 (2.1)

cov(Xi, Yj) ≤ 2φ1/p(j − i)‖X‖p.‖Y ‖q (2.2)

for any p, q ≥ 1 and 1/p+ 1/q = 1.

3 Introduction to Wavelet

A wavelet system is an infinite collection of translated and scaled versions of functions φ and ψ called
the scaling function and the primary wavelet functionrespectively. The function φ(x) is a solution of the
equation

φ(x) =
∞∑

k=−∞
Ckφ(2x− k) (3.1)

with ∫ ∞

−∞
φ(x)dx = 1 (3.2)

and the function ψ(x) is defined by

ψ(x) =
∞∑
−∞

(−1)kC−k+1ψ(2x− k) (3.2)

Note that the choice of the sequence Ck determines the wavelet system. It is easy to see that

∞∑
k=−∞

Ck = 2 (3.3)
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Define
φj,k(x) = 2j/2φ(2jx− k), −∞ < j, k <∞ (3.5)

and
ψj,k(x) = 2j/2ψ(2jx− k), −∞ < j, k <∞ (3.6)

Suppose that the coefficients Ck satisfy the condition

∞∑
−∞

cKck+2l = 2 if l = 0

= 0 if l �= 0

It is known that , under some additional condition on ψ, the collection {ψj,k,−∞ < j, k < ∞} is an
orthonormal basis for L2(R) and {ψj,k,−∞ < k < ∞} is an orthonormal system in L2(R) for each
−∞ < j <∞ (cf. Doubachies (1990)).

Definition 3.1. A scaling function φ ∈ c(r)is said to be r-regular for an integer r ≥ 1 if for every
non-negative integer l ≤ r and for any integer k,

|φ(l)(x)| ≤ ck(1 + |x|)−k, −∞ < x <∞ (3.8)

for some ck ≥ 0 depending only on k where φ(l)(.) denotes the l-th derivative of φ.

Definition 3.2. A multiresolution analysis of L2(R) contains of increasing sequences of closed subspaces
Vj of L2(R) such that

(i)
⋂∞

j=−∞ Vj = {0};

(ii)
⋃∞

j=−∞Vj = L2(R);

(iii)there is a scaling function φ ∈ V0 such that

φ(x− k), −∞ < k <∞

is an orthonormal basis for V0; and for all h ∈ L2(R),

(iv) For all −∞ < k <∞, h(x) ∈ V0 ⇒ h(x− k) ∈ V0

(v) h(x) ∈ Vj ⇒ h(2x) ∈ Vj+1.

Let H́2 denote the space of all functions g(.) in L2(R) whose first (S − 1) derivatives are absolutely
continuous and define the norm

‖g‖H́2
=

∞∑
−∞

[
∫

|g(j)(t)|2dt]1/2

Lemma 3.1.(Mallat(1989)) Let a multiresolution analysi be r-regular. Then for every 0 < s < r, any
function g ∈ L2(R) belongs to H́2 iff

∞∑
t=−∞

e2t e
2sl <∞ (3.9)

where e2l = ‖g − gl‖2
2 and gl is the orthogonal projection of g on Vt.
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Remarks. The above introduction is based on Antoniadis et al. (1994). For a detailed introduction to
wavelet, see Chui (1992) or Daubechies (1992). For a brief survey, see Strang (1989).

4 Estimation by the Methods of Wavelets

Suppose X1, ...Xn are independent and identically distributed random variables with density f. that f is
d-times differentiable and that f (d) denotes the d-th derivative of f We interpret f (0) as f . The problem
of interest is the estimation of

Id(f) =
∫ ∞

−∞
f (d)2(x)dx (4.1)

Assume that f(d) ∈ L2(R) and there exist Dj ≥ 0, βj ≥ 0 such that

|f (j)(x)| ≤ Dj |x|−βj for |x| ≥ 1, 0 ≤ j ≤ d (4.2)

where β > 1.
Consider a mulitiresolution as discussed in Section 3. Let φ be the corresponding scaling function.
Suppose that the multiresolution is r-regular for some r ≥ d. Then by definition, φ ∈ C(r), φ and its
derivative φ(j) up to order r are rapidly decreasing i.e., for every integer m ≥ 1, there exists a constant
Am > 0 such that

|φ(j)(x)| ≤ Am

(1 + |x|)m
, 0 ≤ j ≤ r (4.2)

Let
φl,k = 2l/2φ(2lx− k), −∞ < k, t <∞ (4.3)

Then
φ

(j)
l,k = 2l/2+ljφ(j)(2lx− k), − 0 ≤ j ≤ r (4.4)

and

|φ(j)
l,k (x)| ≤ 2(l/2)+ljAm

(1 + |x|)m
, 0 ≤ j ≤ r (4.5)

If d ≥ 1, then it is clear that

lim
|x|−→∞

φ
(j)
l,kf

(d−j−1)(x) = 0, 0 ≤ j ≤ d− 1 (4.6)

for any fixed l and k. Let fld is the orthogonal projection of f (d) on Vl. Note that

fld(x) =
∞∑

j=−∞
al,jφlj(x) (4.7)

where
alj =

∫ ∞

−∞
f (d)(u)φl,j(u)du

= (−1)d

∫ ∞

−∞
f(u)φ(d)

l,j (u)du (4.8)

by (3.4) for d ≤ 1. Clearly the equation (4.9) holds for d = 0. Hence for all d ≥ 0

alj = (−1)dE[φ(d)
l,j (X1)] (4.10)

Further more

e2l ≡ ‖f (d) − fld‖2
2 = ‖f (d)‖2

2 −
∞∑

k=−∞
a2

lk −→ 0 as l −→ ∞ (4.11)

1335

Proceedings of The 9th Islamic Countries Conference on Statistical Sciences 2007
ICCS-IX 12-14 Dec 2007



by the properties of multiresolution decomposition. Hence ‖g‖p =
∫ ∞
−∞ |g|pdx1/p

, p ≥ 1. Note that

Id(f) = ‖f (d)‖2
2 (4.12)

Let

fK,l,d(x) =
K∑

k=−K

alkφl,k(x) (4.13)

where K = Kn is a sequence of positive integers depending on l = ln tending to infinity as n −→ ∞ and
l = ln −→ ∞ as n −→ ∞. Note that fK,l,d(x) is a truncated projection of f (d) on Vt. Given an i.i.d
sample X1, ...Xn, let

Alk =
1

n(n− 1)

n∑
i=1�=j

n∑
j=1

φ
(d)
lk (xi)φ

(d)
lk (xj) (4.14)

and we estimate Id(f) by

Îd(f) =
K∑

k=−K

Alk (4.15)

Note that
E(Alk) = a2

lk (4.16)

and

E(Îd(f)) =
K∑

k=−K

a2
lk (4.17)

5 Main Results

Suppose that as ln −→ ∞
kn = 2{(2d−1)+2β0+2s}{ln/(2β0−1)}} logn

Define Îd(f) as an estimator of Id(f) where Îd(f) is given by the equation (4.15), then we have the
following two results:

Theorem 5.1. If {Xn} satisfies the condition c1, then

n(n− 1)
22ln(1+2d)

E|Îd(f) − Id(f)| −→
∫
φ(d)2(x)dx

2

as n −→ ∞

Theorem 5.2. If {Xn} satisfies the condition M1, then

n(n− 1)
22ln(1+2d)

E|Îd(f) − Id(f)| −→
∫
φ(d)2(x)dx

2

as n −→ ∞

6 Proofs

Let

J2
n = E|Îd(f) − Id(f)|2 = V ar(Îd(f)) + {EÎd(f) − Id(f)}2

= V ar(Îd(f)) + (
∑

a2
lk −

∫
f (d)2(x)dx)2

= V ar(Îd(f)) + (‖fk,l,d‖2
2 − ‖f (d)‖2

2)
2
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Following along the lines of Roa(1999), we get

(‖fk,l,d‖2
2 − ‖f (d)‖2

2)
2 = o(2−4sln) (6.1)

proof of Theorem 5.1. Observe that

V ar(Îd(f)) = V ar(
k∑
−k

Alk) =
∑

k

∑
ḱ

cov(Alk, Alḱ) (6.2)

where cov(X,Y ) is interpreted as var(X). It is straightforward to check that

∑
k

∑
ḱ

EAlkAlḱ =
1

n2(n− 1)2
∑

k

∑
ḱ

∑
Eφ

(d)
lk (xi)φ

(d)

lḱ
(xj)φ

(d)
lk (x́i)φ

(d)

lḱ
(x́j) (6.3)

where the last summation runs over all i, j, í, j́. Using (2.1) in (6.2) leads to

∑
k

∑
ḱ

EAlkAlḱ =

1
n2(n− 1)2

∑
1≤i≤j≤n

ρ(j − i)
∑

k

(
∫
φ

(d4)
lk (xi)f(xi)dxi)1/2

∑
ḱ

(
∫
φ

(d4)

lḱ
(xi)f(xi)dxi)1/2+

1
n2(n− 1)2

∑
i<j

∑
k

Eφ
(d2)
lk (xi)

∑
ḱ

Eφ
(d2)

lḱ
(xi) (6.4)

Note that it suffices to bound the right-hand side of (6.3). By (4.5) and Masry(1994), one may easily get

∑
k

(
∫
φ

(d)4

lk (xi)f(xi)d(xi))1/2
∑

ḱ

(
∫
φ

(d)4

lḱ
(xi)f(xi)d(xi))1/2

≤
∑

k

(2l+4ld

∫
φ

(d)4

lk (xi)f(
k + u

2l
)d(u))1/2

∑
ḱ

(2l+4ld

∫
φ

(d)4

lḱ
(xi)f(

ḱ + v

2l
)d(v))1/2

= 22l+4lk
∑

k

∫
φ(d)4(u)f(

u+ k

2l
)du

= 22l+4lk

∫
φ(d)4(u)du(1 +O(2−l)) (6.5)

By similar argument as in Rao(1999), we get

∑
k

Eφ
(d)2

lk (xi)
∑

ḱ

Eφ
(d)2

lḱ
(xi) ≤ 22l(1+2d){

∫
φ(d)4(u)du}2

+2−2l(1+2d)
∑

k

∑
ḱ

a2
lka

2
lḱ

+O(
1

22l(1+2d)
) (6.6)

Substituting (6.5) and (6.6) in (6.4), one may easily obtain

∑
k

∑
ḱ

EAlkAlḱ ≤ 22l+4ld

n2(n− 1)2
2
n

∑
k

ρ(k)
∫
φ(d)4(u)du(1 +O(2−l))
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+
2

n(n− 1)
[22l+(1+2d)]{

∫
φ(d)4(u)du}2 +

1
22l(1+2d)

∑
k

∑
ḱ

a2
lka

2
lḱ

+O(
1

22l(1+2d)
)

Since
∑

k ρ(k) <∞ and 1
22l(1+2d)

∑
k

∑
ḱ a

2
lka

2
lḱ

= o(1) ,(Roa(1999)),

1
22l(1+2d)

∑
k

∑
ḱ

EAlkAlḱ = O(n−3) +
1

n2(n− 1)2
{
∫
φ(d)4(u)du}2 + o(1) +O(1) (6.7)

So we may easily conclude

n(n− 1)
22l(1+2d)

V arÎd(f) = O(n−2) + {
∫
φ(d)4(u)du}2 + o(1) +O(

1
22l(1+2d)

) (6.8)

Applying (6.8) in (6.1), yields the desired result.

proof of Theorem 5.2. Applying Holder inequality for v and v́ with 1/v + 1/v́ = 1, one may obtain
∫
φ

(d)2

lk (xi)φ
(d)2

lḱ
(xj)f(xi, xj)dxidxj

≤ Fv2l+4ld(
∫
φ

(d)4v́
lk (u)du)1/2v́(

∫
φ

(d)4v́
lk (v)dv)1/2v́

≤ Fv2l+4ld(
∫

A4v́
m

(1 + u)4mv́
du)1/2v́(

∫
A4v́

m

(1 + v)4mv́
dv)1/2v́

So it is easy to obtain

∑
k

∑
ḱ

∫
φ

(d)2

lk (xi)φ
(d)2

lk (xj)f(xi, xj)dxidxj

≤ Fv2l+4ldA4v́
m

∑
k

(
∫

du

u4mv́
du)1/2v́

∑
k

(
∫

dv

v4mv́
dv)1/2v́

= Fv2l+4ldA4v́
m

∑
u

(
∫

du

u4mv́
du)1/2v́

∑
v

(
∫

dv

v4mv́
dv)1/2v́

≤ Fv2l+4ldA4v́
m

∑
u

u(−4mv́)1/2v́

1 − 4mv́

∑
v

v(−4mv́)1/2v́

1 − 4mv́

≤ Fv2l+4ldA4v́
m

∫ k

1

u−2m+1/v́

1 − 4mv́
du

∫ k

1

v−2m+1/v́

1 − 4mv́
dv

= Fv22+4ldA4v́
m [

−k−2m+ 1
2v́ +1

(1 − 4mv)(2m+ 1
2v́ + 1)

]2

= O(2l+4ld) = o(1) (69)

Using (6.6), (6.9) and (6.2) in (6.1), conclude the result.
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