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Abstract

The problem of estimation of the squared derivative of a probability density f is considered using
wavelet orthogonal bases. We obtain the precise asymptotic expression for the mean integrated error
of the wavelet estimators when the process is strongly mixing.
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1 Introduction

The motivation for estimation I;(f) = [ f (@)? (x)dx where f is a probability density and f(4 is the
d-th derivative is well known. Kernel-type estimation the functionall(f) has been investigated by Hall
and Marron(1987). and Bickel and Ritov(1988) among others. In Prakasa Roa(1996), we have studied
nonparametric estimation of the derivative of a density by wavelets and obtained a precise asymptotic
expression for the mean integrated squared error following techniques of Masry(1994). Estimation of
the integrated of squared density was discussed in Prakasa Roa(1997) by the method of wavelets and a
precise asymptotic expression for the mean squared error had been obtained. Prakasa Roa(1999) also
obtained the precise asymptotic expression integrated squared error of the wavelet estimators.

We now extend the result to the case of strongly mixing process . We show that the L, error of the
proposed estimator attains the same rate as when the observations are independent. Certain week de-
pendence conditions are imposed to the x; defined in {Q, N, P}.

Let NJ* denote the o-algebra generated by events X € Ay, ..., X, € Ap,. We consider the following
classical mixing conditions:

1. Strong mixing (s.m) also called c-mixing:
supsup[p(AB) — p(A)p(B)| = a(s) = 0 as s — oo
2. Complete regularity (c.r.), also called S-mixing:

sup E{var|p(B|N{") — p(B)|} = 8(s) — 0 as §— 00

3. Uniformely strong mixing (u.s.m.), also called ¢ — mizing:

Ip(AB) — p(A)p(B)|
p(A)

sup sup =¢(s) — 0 as §— 00

4. p-mixing:
supsup |corr(X,Y)| = p(s) — 0 as s — o0
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The problem of density estimation from dependent samples is often considered. For instance quadratic
losses were considered by Ango Nze and Doukhan(1993). Bosq (1995), Castella and Leadbetter(1998)
and Doukhan and Loen(1990).

Linear wavelet estimators were also used in context: Doukhan (1988) and doukhan and Loen(1990).

Leblance (1995)also established that the Ly -loss (2 < p < 00) of the linear wavelet density estimators
for a stochastic process converges at the rate N1 (s =1/p+ 1/p), when the density of f belongs to

the Besov space B ;. Dooti , Niroumand and Afshari (2006) extended the above result for derivative of
a density.
2 Discussion of Theorem’s Assumptions
Consider the following conditions:
C4:The distribution of (X,,,X;) has a joint density f, ¢ such that for all m and t, m # ¢
(/ |fm,t($,y)|vd$dy)l/v = lfmt(, )| < F, <oo  forsome v > 2
M;:The process is p-mixing and Y ;o p(t) < R < oo.
M,:The process is ¢-mixing and Y 5| ¢'/2(t) < ¢ < 0.

Since the inequality p(t) < 2¢'/2(t) holds (see Doukhan 1994), M implies M; . Also note that if X and
Y are random variables , then the following covariance inequalities hold.(see Doukhan , 1999, section 1.2.2)

cov(X:, Y;) < 20(G — DIIX .Y 2 (2.1)
coo(X, Y;) < 267 (j — )XY g (2.2)

for any p,g>1and 1/p+1/q=1.
3 Introduction to Wavelet

A wavelet system is an infinite collection of translated and scaled versions of functions ¢ and v called
the scaling function and the primary wavelet functionrespectively. The function ¢(z) is a solution of the
equation

dx) = Y Crp(2z —k) (3.1)

k=—00
with -
/ d(x)dx =1 (3.2)
and the function ¢ (x) is defined by

oo

d(x) =Y () Coyap(2z — k) (3-2)

—0o0

Note that the choice of the sequence C} determines the wavelet system. It is easy to see that

i Cr=2 (3.3)

k=—oc0

1333



Proceedings of The 9th Islamic Countries Conference on Statistical Sciences 2007
ICCS-IX 12-14 Dec 2007

Define A ‘
bjn(x) =22p(2x — k), —o0 < jk<oo

and 4 '
bik(x) =27z — k), —oo<jk<oo

Suppose that the coefficients C} satisfy the condition

oo
E CKCi421
— 00

2 if 1=0

= 0 if 140

It is known that , under some additional condition on 1, the collection {¢;x, —0c0 < j,k < oo} is an
orthonormal basis for L?(R) and {1, —00 < k < oo} is an orthonormal system in L?(R) for each

—00 < j < oo (cf. Doubachies (1990)).

Definition 3.1. A scaling function ¢ € ¢(Mis said to be r-regular for an integer r > 1 if for every

non-negative integer [ < r and for any integer k,

160(2) < cu(1+ 27", —oco<z<oo

for some ¢, > 0 depending only on k where ¢()(.) denotes the l-th derivative of ¢.

(3.8)

Definition 3.2. A multiresolution analysis of L*(R) contains of increasing sequences of closed subspaces

V; of L?(R) such that
D2 Vi = {0}
(U= Vs = L*(R);
(iii)there is a scaling function ¢ € Vp such that
opx—k), —co<k<oo
is an orthonormal basis for Vp; and for all h € L?(R),
(iv) For all —co < k < oo, h(z) e Vo = h(z — k) € Vo

(v) h(z) € V; = h(2zx) € V1.

Let H, denote the space of all functions g(.) in L2(R) whose first (S — 1) derivatives are absolutely

continuous and define the norm

lgll g, = Z[/ 199 (1) |2dt] 2/

Lemma 3.1.(Mallat(1989)) Let a multiresolution analysi be r-regular. Then for every 0 < s < r, any

function g € L2(R) belongs to Hy iff

o0
g eZe?! < 0o

t=—o0

where 612 =|lg — || and g; is the orthogonal projection of g on V;.
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Remarks. The above introduction is based on Antoniadis et al. (1994). For a detailed introduction to
wavelet, see Chui (1992) or Daubechies (1992). For a brief survey, see Strang (1989).

4 Estimation by the Methods of Wavelets

Suppose X7, ...X,, are independent and identically distributed random variables with density f. that f is
d-times differentiable and that f(%) denotes the d-th derivative of f We interpret f(9) as f. The problem
of interest is the estimation of

o0
() = [ £ @)da (4.1)
— 00
Assume that fq) € L?(R) and there exist D; >0, 8; > 0 such that
|f9(x)| < Djla|™ for |z >1,0<j<d (4.2)

where 0 > 1.

Consider a mulitiresolution as discussed in Section 3. Let ¢ be the corresponding scaling function.
Suppose that the multiresolution is r-regular for some r > d. Then by definition, ¢ € C"), ¢ and its
derivative ¢U) up to order r are rapidly decreasing i.e., for every integer m > 1, there exists a constant
A,, > 0 such that

A
|09 ()] < ,0<ji<r (4.2)
(L+[z)m
Let
drp = 2202 — k), — o0 <kt < oo (4.3)
Then ‘ o
o =2/ (2l — k), —0<j <y (4.4)
and (1/2)+1j
() 207 Ay :
s Mmoo <i<r 45
@) < T 057 < (4.
If d > 1, then it is clear that
Jim g1 @) =0, 0< < -1 (4.6)

for any fixed [ and k. Let fiq is the orthogonal projection of f(*) on V;. Note that

oo

fa(@) = > aju() (4.7)

j=—o0

ayj = /OO FD () j (u)du
/ﬁ Fw)g) (w) (4.8)

by (3.4) for d < 1. Clearly the equation (4.9) holds for d = 0. Hence for all d > 0

where

d
ai; = (~1)?E[6\? (X1)] (4.10)
Further more -
ef = £~ fual3 = IF N3 - D af, — 0 as I — oo (4.11)
k=—
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by the properties of multiresolution decomposition. Hence ||g||, = ffooo \g|pd:ﬂ1/p, p > 1. Note that

L(f) = IF13 (4.12)
Let
K
fria(z) = Z aik 1k () (4.13)
h=—K

where K = K, is a sequence of positive integers depending on [ = [,, tending to infinity as n — oo and
l =1, — o0 as n — oo. Note that fx;q(x) is a truncated projection of @ on V;. Given an i.i.d
sample X1, ...X,,, let

Ay = Z Z¢>(d) ( ¢1k (z5) (4.14)
i=1#j j=1
and we estimate I4(f) by
K
= Z m (4.15)
k=—K
Note that
E(Ay) = afy, (4.16)
and X«
)= Y ai (4.17)
k=—K

5 Main Results

Suppose that as [,, — oo
k, = 212d=1)+200+25}{In/(260=1)}} 150 py

Define I4(f) as an estimator of I(f) where I;(f) is given by the equation (4.15), then we have the
following two results:

Theorem 5.1. If {X,,} satisfies the condition ¢;, then

n(n—1)

2
st Bl = (Pl — [0 @)z a5 n— oo

Theorem 5.2. If {X,,} satisfies the condition M, then

n(n—1)

2
gt Bl = (Pl — [0 @)z a5 n— oo

6 Proofs
Let
J2 = Ela(f) = L(f)I* = Var(Ia(f)) + {ELa(f) — 1a(f)}?

Var(la(f Zalk /f(d (x)dz)®

= Var(La(f) + (I feaalls = I1FD13)?
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Following along the lines of Roa(1999), we get

(I frall3 = 1FD13)? = o(274) (6.1)
proof of Theorem 5.1. Observe that

k
Var(la(f)) = Var(d_ Aw) = > cov(Aw, Ay) (6.2)
—k kg
where cov(X,Y) is interpreted as var(X). It is straightforward to check that

SN BAnAy = s Z Z S B (@i)ol (x)08)) (4:)02 (i) (6.3)

ko k

where the last summation runs over all 7, j,4, j. Using (2.1) in (6.2) leads to

ZZEA”CA”% =
1 N / (@) /
n2(n_ 1)2 1§§<n .7 Z /¢l xz d$ . 22 /Qb z )1 2+
QZZE¢(d) ZMW ) (6.4)

i<j k

Note that it suffices to bound the right-hand side of (6.3). By (4.5) and Masry(1994), one may easily get

/¢(d)4 1/22 /¢(d)4 (2;)d(x;))"/?

< S [ ol ) £ )2 S [ o0 ) (5 ()

k k

_ 92l+alk Z / ¢(d)4 “ + k)du

:22l+4lk/¢(d)4(u)du(1_|_O(2*l)) (6.5)

By similar argument as in Rao(1999), we get

ZE¢(d) (2 ZE¢ d) ) < 221(1+2d){/ q/)(d) )du }2

1
—21(142d 2 2
+27H424) Z Z Qipay + 0(221(1+2d) ) (6.6)
L
Substituting (6.5) and (6.6) in (6.4), one may easily obtain

22l+4ld

ZZEAmAm—n (n— Zﬂ ) [ 6 @du(1 + 02

1337



Proceedings of The 9th Islamic Countries Conference on Statistical Sciences 2007
ICCS-IX 12-14 Dec 2007

2
n(n —1)

4 1
+7[22z+(1+2d)]{/¢(d> (u)du}? + QAT r2d) Z Zazzkalz;;- +0(
kg

Since Y-, p(k) < 00 and sz Yo 2ok algkalg]é = 0(1) ,(Roa(1999)),

e 20 20 B = On™) + sy { [ 69 ()duf? (1) + 0(1)
Kok

So we may easily conclude

n(n—1)
921(1+2d)

Varly(f) = O(n=2) + {/ oD (w)du}? + o(1) + O(

Applying (6.8) in (6.1), yields the desired result.

921(1+2d) )

(6.7)

proof of Theorem 5.2. Applying Holder inequality for v and ¢ with 1/v 4+ 1/9 = 1, one may obtain

[ A7 06 ) S,
< 2 [ o0 ) 2 [ o )

<F 2l+4ld( A#f du)l/mﬁ( A#j dv)1/215
- v (1+u)4m1'1 (1_|_U)4m1'1

So it is easy to obtain
d)? d)?
S5 [ ol woelt w5 iy
ko g

5 du 5 dv 5
< F,oltild i Z</ it du)l/Z”Z(/ - dv)t/2

k k

" du - dv .

— Fv21+4ldA;1r';1 Z(/ e du)1/2u Z(/ = dU)1/2U
u v

g (—4md)/?? (—4mo)'/?*

v

< Fv2l+4ldA;L1fZ : o . o
— 4muv — 4mv

k
- u
< F2ltald g4i / dv

—2m+1/% k U72m+1/6
1 1—4mo /1

1 —4mo

_f2mt g+l

_ Fv22+4ldA:1r1l}[ ]2

(1 —4mv)(2m+ 3 + 1)
_ O(2l+4ld) _ 0(1)

Using (6.6), (6.9) and (6.2) in (6.1), conclude the result.
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