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Abstract

We propose a method of estimation of the derivatives of probability density
based wavelets methods for a sequence of negatively associated random vari-
ables with a common one-dimensional probability density function and obtain
an upper bound on Lj-losses for the such estimators.
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1 Introduction

Methods of estimation of density and regression function is quite common in statistical
applications. Recently, there has been a lot of interest in nonparametric estimation of
such functions based on wavelets. The reader may be referred to Hérdle et al.(1998)
and Vidakovic (1999) for a detailed coverage of wavelet theory in statistics and to
Prakasa Rao (1999) for a recent comprehensive review and application of these and
other methods of nonparametric functional estimation.

Antoniadis et al. (1994) and Masry (1994) among others discuss the estimation of
regression and density function using the wavelets. Prakasa Rao (1996) considered the
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use of wavelets for estimating the derivatives of a density and investigated further their
use for estimating the integrated squared density [see Prakasa Rao (1999a)]. Walter
and Ghorai (1992) discuss the advantages and disadvantages of wavelet based methods
of nonparametric estimation from +¢.7.d. sequences of random variables. Prakasa
Rao (2003) echoes the same advantages and disadvantages for the case of associated
sequences while dealing with nonparametric estimation of density itself using wavelets.
It should be pointed out that these methods allow one to obtain precise limits on
the asymptotic mean squared error for the estimator of density and its derivatives
as well as some other functionals of the density [see Prakasa Rao (1996, 1999a)|.
Recently, Chaubey et al. (2006) have generalized the results of Prakasa Rao (1996)
to estimating the derivatives of a density for associated sequences. Similar results were
also obtained by Doosti et al. (2005) in estimating the density itself for negatively
associated sequences as a generalization of the results of Prakasa Rao (2003) for
estimating the density for associated sequences. Here we generalize these results to
the case of estimating derivatives of a density of negatively associated sequences.
We recall the definition of negative association for an arbitrary collection of random
variables.

Definition 1.1 A finite family of random variables (r.v.s) {X;,1 < i < n} is said
to be negatively associated (NA)if, for every pair of disjoint subsets A and B of
{1,2,...,n}, we have

CO’U{hl(Xi,i S A),hQ(Xj,j € B)} < O,

whenever hy and hy are real-valued coordinate-wise increasing functions and the co-
variance exists. A random process {X;}2 is NA if every finite sub-famaily is NA.

1=—00

The dependence structure characterized by NA was first introduced by Alam and
Saxena (1981) and later studied by Joag-Dev and Proschan (1983). It has found a
number of applications in certain fields. Roussas (1996) provides an excellent review
of the subject with a comprehensive list of references.

In this paper, our purpose is to extend the results in Prakasa Rao (1996) for
estimating the derivatives of a density using wavelets to the case of a negatively as-
sociated sequence along the lines in Prakasa Rao (2003).

The organization of the paper is as follows. In section 2, we discuss the prelimi-

naries of the wavelet based estimation of the derivatives of the density along with the
necessary underlying setup considered in Prakasa Rao (1996). Then in section 3, we
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extend his result to squared integrated error measured in p—norm. This result is then
generalized to NA case and finally we obtain bounds on the L,—losses similar to the
one obtained by Prakasa Rao (2003) for density estimation for the case of positive
association.

2 Preliminaries

Let {X,,,n > 1} be a sequence of random variables on the probability space (2, R, P).
We suppose that X; has a bounded and compactly supported marginal density f(.),
with respect to Lebesgue measure, which does not depend on i. We estimate this
density from n observations X;,i = 1, ..., n. For any function f € Ly(R), we can write
a formal expansion (see Daubechies (1992)):

f= Z Qo kPjo k + Z Z 0jkVik = Pjof + Z D;f

kez Jj=2jo keZ Jj=Jjo
where the functions ' '
Gjo(w) = 2°126(2" 0 — k)
and ' '
Yin(a) = 2722w — k)
constitute an (inhomogeneous) orthonormal basis of Lo(R). Here ¢(z) and ¥ (z) are

the scale function and the orthogonal wavelet, respectively. Wavelet coefficients are
given by the integrals

o — / F (@) (), 8,0 = / Fa)ypda

We suppose that both ¢ and i) € C", (space of functions with r continuous deriva-
tives), r being a positive integer and have compact supports included in [—d, d], for
some § > 0. Note that, by corollary 5.5.2 in Daubechies (1988), ¢ is orthogonal to
polynomials of degree < r, i.e.

/z/z(:c)xlda: =0,Vi=0.1,...,r

We suppose that f belongs to the Besov class (see Meyer (1990), §VI.10), F;,, =
{feB, Ifllp;, <M} for some 0 < s <r+1,p>1andg> 1, where

/]

Bs,, = I1Piofllp + Q_(IDsf1,27%)4)"/

Jj>Jjo
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We may also say f € B, if and only if

lpgj(s+1/2—1/p)>q)1/q < 00 (2.1)

ety Mo, < 00, and (D ([l6;, ]

Jzjo

where||v; [l1, = O rez 7} )P, We consider Besov spaces essentially because of their
executional expressive power [see Triebel (1992) and the discussion in Donoho et al.
(1995)]. We construct the density estimator [see Prakasa Rao (2003)]

. . _ A ] —
f= Z O‘jo,kquo,kv with Qo .k = E Z (bjo,k(Xi)v (2'2>
i=1

]CEK]'O

where K, is the set of k such that supp(f) N supp(¢j, ) # 0. The fact that ¢ has a
compact support implies that K, is finite and card(Kj,) = O(2%°). Wavelet density
estimators aroused much interest in the recent literature, see Donoho et al. (1996)
and Doukhan and Leon (1990). In the case of independent samples, the properties
of the linear estimator (2.2) have been studied for a variety of error measures and
density classes [see Kerkyacharian and Picard (1992), Leblanc (1996) and Tribouley
(1995)]. In the setup considered by Prakasa Rao (1996), we assume that ¢ is a scaling
function generating an r—regular multiresolution analysis and f(@ € Ly(R), for some
r > (d+1). Furthermore, we assume that there exists C,, > 0 and ,, > 0 such that

| ()] < Con(1+ |2])P,0 <m <7 (2.3)

Prakasa Rao (1996) showed that the projection of (9 on Vi, is
d
f;o)(l‘) = Z aj0,k¢jo,k(x)>
kGKjO

where

So its estimator is

f](j)(l’) = Z &jo,k¢j0,k(x)7 (24)

kEKjO

where

. _(—1)d - @ (x.
a.]()vk - Z qb]o,k( l)‘

n
=1

The estimator in Eq. (2.4) will be used as an estimator for f(@(z).
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3 Main Results

First, we consider the sequence {X;,i = 1,...,n} to be consisting of i.i.d. random
variables and extend the result of Prakasa Rao (1996) to integrated squared error,
when the error is measured in p—norm. Therefore, one obtains his result by letting
p = 2. Also, by considering d = 0, we obtain the results obtained in Kerkyacharian
and Picard (1992), Leblanc (1996) and Tribouley (1995). Next, we consider the case
of sequences with NA and obtain similar results in Theorems 3.2 and 3.3; here an
additional condition on the scale function, namely monotonicity, is imposed. In the-
orem 3.2 and 3.3, the results of Doosti et al.(2005) are obtained by letting d = 0.

Before we discuss the main theorems of this paper, we state the following results
that will be required in subsequent proofs, which are readily obtained by using the
results (1.6) and (1.7) of Theorem 2 of Shao (2000):

Let {&;,1 < i < n} be a sequence of NA identically distributed random variables
such that E(§;) = 0, and ||&;||.c < M < oo. Then there exist positive constants C'(p)
and Cy(p) such that

B(1D_&l") < G {M? Y B(E) + Q_BE)) bp>2  (31)

and

E(IY_ &) < )M Y Blghhl<p<2 (32

Theorem 3.1 Let f9(z) € F,,, with s > max (1/p,d),p > 1, and ¢ > 1. Consider
the linear wavelet density estimator in Eq. (2.4) for an i.i.d. sequence of random
variables Xy, ..., X,,. Then for p’ > maz(2,p), there exists a constant C such that

Fd _2'-a)
EHf](O)(x) - f(d)(ft)Hf,/ < (C'n i
where s' = s+ 1/p' — 1/p and 27° = .

Proof: First, we decompose E||f](j)(x) — f@(2)|2 into a bias term and stochastic
term

Ad d ~(d d
E[fD (@) — fD@))% < 2(1fD — D2 + ENfD — £O)2) = 2T + ) (3.3)
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Now, we want to find upper bounds for 7} and T5.

VT =11 Dif Dy < Y (1D f D27 )27

iZi0 JZdo
<UD f D2 )y 2y
iZio 370

By Holder’s inequality, with 1/g + 1/¢’ = 1, from the above equation, we have

Ty < C|| ¢ 275, (3.4)

5 2 o< O F s

The last inequality holds,because of the continuous Sobolev injection [see Triebel
(1992) and the discussion in Donoho et al.(1996)]which implies that for B;  C B;' "
one gets,

£
Therefore, we get from Eq. (3.4)

(d)
B;qu <|f HB;,A,Q-

T, < K270 (3.5)
Next, we have

~(d d
=E|f = £ =B > (an — ajon)bion(@)]2-

keKj,
This gives by using Lemma 1 in Leblanc (1996), p. 82 (using Meyer (1990)),
Ty < CB{lligos — ajosll?, }220 /217,
Further, by using Jensen’s inequality the above equation implies,

T, < C2ORNLY 7 B, — ajo " 117 (3.6)
kGKjO

To complete the proof, it is sufficient to estimate E|a;, » — aj,4|?. We know that

&Jo, = Qjo,k Z{ ]0, 1 a]o,k]}
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Denote & — [0, (X,) — ajoal. Note that €l < K.200/200 6], E€, = 0,E€? <
|| f || oo 2204 ffooo $* 9 (v)dv and |Gjok — Qo k| = %| >, &l Hence applying the result

in Eq. (3.1) and using card(Kj,) = O(27) we have

{3 EBlaje—apil? 127 < {Cga’o%(ng(jo/zxp’—zwdp’)cl 20000 Y2
n
kEKJ‘O
2jo(1+2d)  92jod+2(jo/p!)
< 5 1/7) + - }. (3.7)

Now by substituting the above bound in (3.6), we get

ity 2PF20 92iod 20 /p) 92j0—2(jo/p)+2j0d  9jo(1+2d)
0 - _
T2 S K12 {nQ(lfl/p/) + n } — Kl{ n272/p/ + n
9do 9jo(1+2d) = 9jo(1+2d)
e 2Ty
n n n

Since n > 2% and 1 —2/p’ > 0 imply (%)1_2/”/ < 1, we have the inequality

K ,2d0(1+2d)
e n—

. (3.8)

By using the bounds obtained in (3.5) and (3.8), and choosing j, such that 270 = NI
in (3.3), the theorem is proved. 0

Now, in the rest of paper we consider { X;} as a NA sequence of random variables.
We also consider the derivatives of scale function, say ¢?, to be bounded variation

(BV) function.

Theorem 3.2 Let ¢9 be BV, f9(z) € F,,, with s > max(1/p,d),p > 1, and
q > 1. Consider the linear wavelet based estimator in Eq. (2.4) for NA sequence of
random variables X1, ..., X,,. Then, for p’ > max(2,p), there exists a constant C" such
that

2(s’ —d)

» e
B0 (@) - Q@) < € n
where s' = s+ 1/p' —1/p andeoznﬁ‘

Proof: The proof is similar to the proof of Theorem 3.1 (see Doosti et al.(2006). We
shall prove Eq. (3.7) will remain true. Since ¢(¥ is BV, so it is the difference of two
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finite-valued monotone increasing function, say ¢;, ¢o, on [—6,6] (De Barra (1974)
Theorem 2. page 84), i.e., ¢'¥ = ¢; — ¢. Also we could define

G1jok) (1) = 29201 (202 — k), i (1) = 202 9p (202 — k)

so we have gbm k= P1(jo,k) — P2(jo,k)- Furthermore If we define:

o = (=1)f / D100 () F ()
az = /¢230k dr,

Sy = ¢1J0k
Soti) = Dagjo,k) — G2,

then it is easy to see:

E&) = E&u =0
1@l < Kll&llo < 200249 g] 0,1 = 1,2,

B, < KE& < ||f]|2% / SO (o), = 1,2,

, where &; defined before.

In view of the NA property of the sequence {X,,n > 1} and the monotonicity of
the functions ¢, ¢or) and ¢,¢o k), it follows that the sequences {&(;),7 > 1} and
{&),1 > 1} are also a sequences of NA random variables. Now by considering Eq.
(3.1) and using following below inequality, we see the Eq. (3.7) remain true.

’Zfi|p/ < 27| Z&(iﬂp/ + | 262(1')’1)/)' (3.9)

The rest of proof is similar to the proof of Theorem 3.1. 0
Now, suppose 1 < p < 2, the following theorem gives an upper bound for the
expected loss E||f d)||§ .

Theorem 3.3 Let f9(z) € F,,, with s > max (1/p,d),p > 1, and ¢ > 1 then for
1 < p' < 2. Consider the linear wavelet based estimator in Eq. (2.4) for NA sequence
of random variables Xy, ..., X,,. There exists a constant C' such that

(2s'—1/2—d)(p’' —1)—d

E| /() - fD(@)|]h < Cn

where s' = s+ 1/p' —1/p and 2% = .
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Proof: Observing that

~ d / /7 d / ~ d d /
E| 9 — fD|7 <o 1| f@ — f D1 L B[ fD — fD)7) (3.10)
and , '
179 = £l < Cramve (3.11)
we have
~(d d)p’ jo(p /2— - !
||/ — 177 < 02500 20N Blag, — ajxl”} (3.12)
kEKjO

Thus, to complete the proof, it is sufficient to estimate E|a;,, — aj07k|p/. Let & =

[qﬁgk (X3) —ajo k|- Because of NA property and monotonicity of scale functions ¢, ¢, x)
and ¢, (j,,x) We know that {£;;),7 > 1} and {&y),7 > 1} remains a sequence of NA
random variables. Moreover

ESi = E&q) =0
l&illo < Kl&]loo < K200 D)l 1 = 1,2,
ES, < KE& < K(|flle)/?27%1=1,2,

We know |, — ajoi| = £| D7, & Hence by the results in (3.2), (3.9) and using
card(Kj,) = O(2°) we have

<
<

Z E|djo k— Qj, k|P' < CQjon—P'2j0(1/2+d)(p'—1)2j0dn
kEKjO
—  (oll+d+(1/24+d)(p' 1) ), 1-p"

Now by substituting the above bound in (3.11), we get

E||f@ — fO < g¥l 2 il (/2400 D1
— (O dolp'=1+d+(1/2+d)(p' 1)) 1-p/

¢ 200[B3/2+d)(p' ~1)+d] ), 1-p'
[(3/24d)(p’ ~1)+d)]
n 1+4+2s/

_(2s'—1/2—d)(p'~1)—d
= n 1+2s/

+1-p’

Thus, we obtain the desired result. 0
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