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Abstract 

 
The research community has recently witnessed the 
emergence of Multi-Processor System on Chip 
(MPSoC) platforms consisting of a large set of 
embedded processors. Particularly, Interconnect 
networks methodology based on Network-on-Chip 
(NoC) in MP-SoC design is imminent to achieve high 
performance potential. More importantly, many well 
established schemes of networking and distributed 
systems inspire NoC design methodologies. Employing 
end-to-end congestion control is becoming more 
imminent in the design process of NoCs. This paper 
presents a centralized congestion scheme in the 
presence of both elastic and streaming flow traffic 
mixture. In this paper, we model the desired Best 
Effort (BE) source rates as the solution to a utility 
maximization problem which is constrained with link 
capacities while preserving Guaranteed Service (GS) 
traffics services requirements at the desired level. We 
proposed an iterative algorithm as the solution to the 
maximization problem which has the benefit of low 
complexity and fast convergence. The proposed 
algorithm may be implemented by a centralized 
controller with low computation and communication 
overhead 
 
1. Introduction 

 
The high level of system integration characterizing 

Multi-Processor Systems-on-Chip (MPSoCs) is raising 
the scalability issue for communication architectures. 
Towards this direction, traditional system 
interconnects based on shared busses are evolving both 
from the protocol and the topology viewpoint. 
Advanced bus protocols acts in favor of better 
exploitation of available bandwidth, while more 
parallel topologies are instead being introduced in 
order to provide more bandwidth [1].  

In the long run, many researchers and SoC designers 
agree on the fact that this trend approaches the 
Network-on-Chip (NoC) as a solution to the lack of 

 
SoCs’ Scalability [2]. 

A NoC system fundamentally consists of three 
components: switches, Network Interfaces (NIs) and 
links. The switches can be arbitrarily connected to 
each other and to NIs, based on a specified topology. 
They are responsible for routing, switching and flow 
control logic, as well as error control handling. NIs are 
responsible for packetization/depacketization and 
implement the service levels associated with each 
transaction.  

Recently, Quality-of-Service (QoS) provisioning in 
NoC’s environment has attracted many researchers and 
currently it is the focus of many literatures in NoC 
research community. NoCs are expected to serve as 
multimedia servers and are required not only to carry 
Elastic Flows, i.e. BE traffic, but also Inelastic Flows, 
i.e. GS traffic which requires tight performance 
constraints such as necessary bandwidth and 
maximum delay boundaries.  

It’s obvious that a network with data services needs 
some mechanisms to avoid congestion. Congestion 
Control in data networks is known as a widely-studied 
issue over the past two decades. However, it is still a 
novel problem in NoCs and to the best of our 
knowledge only few works has been carried out in this 
field. Congestion control, or equivalently, flow control 
in NoCs mainly focuses on the resource constrained 
on-chip designs, with the aim of minimizing the 
network cost or maximizing network utility while 
maintaining the required Quality-of-Service (QoS).  
 
2. Related Works 

 
Flow control for data networks is a widely-studied 

issue [3]-[6]. A wide variety of flow control 
mechanisms in data network belongs to the class of 
End-to-End control schemes, like TCP/IP, which is 
mainly based on the window-based scheme. In this 
methods, routers and intermediate nodes avoid the 
network from becoming congested by means of packet 
dropping deterministically (as in DropTail) or 
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randomly (as in RED). Therefore, sent packets are 
subject to loss and the network must aim to providing 
an acknowledgement mechanism. On the other On-
chip networks pose different challenges. The reliability 
of on-chip wires and more effective link-level flow-
control allows NoCs to be loss-less. Therefore, there is 
no need to utilize acknowledgment mechanism and we 
face to slightly different concept of flow control. 

So far, several works have focused on this issue for 
NoC systems. In [7], a prediction-based flow-control 
strategy for on-chip networks is proposed in which 
each router predicts the buffer occupancy to sense 
congestion. This scheme controls the packet injection 
rate and regulates the number of packets in the 
network. In [8] link utilization is used as a congestion 
measure and a Model Prediction-Based Controller 
(MPC), determines the source rates. Dyad [9] controls 
the congestion by using adaptive routing when the 
NoC faces congestion.  

In this paper, we focus on the flow control for BE 
traffic as the solution to a utility-based optimization 
problem. To the best of our knowledge, none of the 
aforementioned works have dealt with the flow control 
problem through utility optimization approach. In our 
seminal work [10], we have modeled desired BE 
source rates as the solution to a utility-based 
optimization problem with general form utility 
function and aimed at the issue with solving the 
proposed problem using Newton method. In [11], we 
also have considered this issue via sum-rate 
optimization problem and used a different approach to 
solve the problem. This paper we address the 
performance analysis of our seminal work [10] with a 
special utility function which satisfies Proportional 
Fairness feature and solve the flow control problem 
using a different approach which leads to low 
complexity flow control algorithm for BE traffic in 
NoCs.  

This paper is organized as follows. In Section 3 we 
present the system model and formulate the underlying 
optimization problem for BE flow control. In section 4 
we proceed to the proposed algorithm and discuss 
about some remarks. In section 5 we solve the 
optimization problem using an iterative algorithm over 
its dual and analyze the convergence behavior of it and 
present the underlying theorem of its convergence. 
Section 6 presents the simulation results. Finally, the 
section 7 concludes the paper and states some future 
work directions. 

 
3. System Model and Flow Control 
Problem 

 
We consider a NoC architecture which is based on a 

two dimensional mesh topology and wormhole 
routing. In wormhole networks, each packet is divided 
into a sequence of flits which are transmitted over 
physical links one by one in a pipeline fashion. A hop-
to-hop credit mechanism assures that a flit is 
transmitted only when the receiving port has free space 
in its input buffer. We also assume that the NoC 
architecture is lossless, and packets traverse the 
network on a shortest path using a deadlock free XY 
routing [2].  

We model the flow control in NoC as the solution to 
an optimization problem. For the sake of convenience, 
we turn the aforementioned NoC architecture into a 
mathematically modeled network, as in [12]. In this 
respect, we consider NoC as a network with a set of 
bidirectional links L  and a set of sources S . A source 
consists of Processing Elements (PEs), routers and 
Input/Output ports. Each link l L∈  is a set of wires, 
busses and channels that are responsible for 
connecting different parts of the NoC and has a fixed 
capacity of lc  packets/sec. We denote the set of 
sources that share link l  by ( )S l . Similarly, the set of 
links that source s  passes through, is denoted by 

( )L s . By definition, ( )l S l∈  if and only if ( )s L s∈ .    
As discussed in section I, there are two types of 

traffic in a NoC: Guaranteed Service (GS) and Best 
Effort (BE) traffic. For notational convenience, we 
divide S  into two parts, each one representing sources 
with the same kind of traffic. In this respect, we denote 
the set of sources with BE and GS traffic by BES  and 

GSS , respectively. Each link l  is shared between the 
two aforementioned traffics. GS sources will obtain 
the required amount of the capacity of links and BE 
sources benefit from the remainder.  

Our objective is to choose source rates with BE 
traffic so that to maximize the weighted sum of the 
logarithm of the BE source rates. Hence the 
maximization problem can be formulated as [12]: 

max log
s

BE

s sx
s S

a x
∈
∑                                                      (1) 

subject to:  

( ) ( )

     
BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑                         (2) 

0     s BEx s S> ∀ ∈                                                   (3) 

Optimization variables are BE source rates, i.e. 
( ,  )BEx s Ss ∈  and sa is the weight for source s . We 
later on discuss how such a weight determines the 
priority of source s  in resource allocation. The 
constraint (2) states that the sum of BE source rates 
passing thorough link l  cannot exceed its free 
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capacity, i.e. the portion of lc  which has not been 
allocated to GS traffic.  

In General, problem (1) belongs to the class of 
utility-based optimization problems, for which the 
utility function, sU , is assumed to be logarithmic, i.e. 

( ) logs s s sU x a x= . Such utility functions, are positive, 
concave and strictly increasing, as logarithmic 
function does. There are many choices for utility 
function, other than logarithmic, with specific features 
and behavior. We discuss in section V, that 
logarithmic utility function have nice properties in 
terms of economic terminology, known as proportional 
fairness [3].  

It is worth to mention that despite the restriction of 
ourselves to a specific utility function, our work can be 
easily generalized to arbitrary utility functions, as in 
our seminal work [10].  

With the model above, problem (1) is a convex 
optimization problem with linear constraints. Hence it 
admits a unique maximizer [13][14], i.e. there exists 
an optimal source rate vector, * *( , )s BEx x s S= ∈  that 
maximizes the objective of problem (1) while 
satisfying capacity constraints.  

Problem (1) is coupled across the network through 
its constraints. Such a coupled nature, necessitate 
usage of centralized methods like Interior Point 
method which poses great computational overhead 
onto the system [13][14] and hence is of little interest.  

In contrast, there are several low-complexity and 
distributive methods to solve unconstrained problems.  
Hence, one way to reduce the computational 
complexity is to transform the constrained 
optimization problem into its Dual, which can be 
defined to be unconstrained. According to the Duality 
Theory [13][14], each convex optimization 
(maximization) problem has a dual, whose optimal 
solution, called Dual-Optimal, leads to best bound 
(upper bound) of the optimal solution of the main 
problem. In this respect, the main problem is 
retroactively called Primal Problem. As the dual 
problem can be defined in such a way to be 
unconstrained, solving the dual is much simpler than 
the primal. 

For notational convenience, we define: 

( )

ˆ
GS

l l s
s S l

c c x
∈

= − ∑                                                      (4) 

We also define the source rate vector (for BE traffic) 
and link capacity vector as ( , )s BEx x s S= ∈  and 
ˆ ˆ( , )lc c l L= ∈ , respectively. To avoid confusing with 
summations indices, we define Routing matrix, 
i.e. [ ]ls L SR R ×= , as following: 

1           if ( ) 

0           otherwise 
BE

ls

s S l
R

 ∈= 
                                (5) 

Using the abovementioned definitions, problem (1) 
can be rewritten as: 

max log
s

s sx
s

a x∑                                                        (6) 

subject to:   

ˆRx c≤                                                                       (7) 

0     s BEx s S> ∀ ∈                                                   (8)  

 
4. Optimal Flow Control Algorithm 

 
In this section, we present a centralized flow control 

algorithm for BE traffic in NoC systems which 
controls the BE source rates in favor of problem (1). 
Later, in section V, we show that solving problem (1) 
leads to the proposed algorithm, and therefore the 
algorithm is an iterative optimal solution to it. The 
proposed flow control algorithm is listed below as 
algorithm 1.  

In the sequel, we make some worth-mentioning 
remarks. Performance analysis of the algorithm is to 
be discussed in the next section. 

 
Remarks: 
1. Considering algorithm 1 as a centralized 

algorithm, we consider a simple controller that can be 
mounted in the NoC, whether as a separate hardware 
module or a part of the operating system, which is 
responsible for running of the algorithm. From 
computational aspect, such a controller must have the 
ability of carrying out simple mathematical operations, 
as in Algorithm 1. Another necessary requirement of 
the controller, as Output section of the algorithm 1 
suggests, is some links e.g. a control bus, to 
communicate the algorithm output to the BE sources.  

Although Algorithm 1 is centralized, it can be easily 
casted into a distributive one upon introducing low 
communication overheads. Thus it can be addressed in 
decentralized scenarios, too. However, due to well-
formed structure of NoC Systems, such a centralized 
algorithm suits for the system and thereafter we only 
focus on the centralized scheme.  

 
2. The proposed flow control algorithm is very 

similar to End-to-End congestion control schemes in 
data networks, also known as TCP which are widely 
used to control BE data flow in the internet. End-to-
End schemes use window-based method, i.e. each 
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 Algorithm 1: Flow Control for BE in NoC 
 
Initialization: 

 
1. Initialize lc  of all links. 
2. Set link shadow price vector to zero.  
3. Set the ε  as the stopping criteria. 

 
Loop: 
Do until (max ( 1) ( ) )s sx t x t ε+ − <    

 
1. l L∀ ∈ : Compute new link prices:  

[
+

( ) ( )

( 1) ( )

           ( ) ( ) ( ( ))   
GS BE

l l

l s s
s S l s S l

t t

c t x t x t

λ λ

γ λ
∈ ∈

+ =

  − − −   
∑ ∑

 
2. Compute new BE source rates as follows  

( 1)
( 1)
s

s
ls l

l

a
x t

R tλ
+ =

+∑
 

 
Output: 
Communicate BE source rates to the corresponding 
nodes.   

 
source maintains a window of packets which are 
transmitted, but not acknowledged. Because the 
packets in data networks may be lost due to dropping 
at the routers or link failure, destination should 
acknowledge the ordered receipt of each packet in the 
current window. Each source changes its window size 
in response to congestion signals, i.e. negative 
acknowledges or duplicates ones, and thereby avoids 
the network to face congestion. Roughly, the source 
rate in each round trip (i.e. the way from source to 
destination and back to the source for 
acknowledgment), is the ratio of window size to the 
round trip time (i.e. duration of the trip).   

Although flow control in TCP is carried out by 
means of window updates, however we can derive the 
corresponding rate updates, too. The proposed flow 
control algorithm is very similar to rate update in TCP 
scheme. Such a similarity stems from the similarity in 
the underlying flow control problem in both schemes. 
However, it is worth noting that unlike TCP, in 
algorithm 1 we have not considered any window based 
transmission and acknowledgement mechanism. This 
is due to the fact that NoC architecture is lossless, as 
previously stated in section III, and hence all packets 
will be delivered successfully and no acknowledgment 
is needed.  

5. Performance Analysis: Optimal Solution 
and Convergence Analysis 

 
In this section, we discuss that solving problem (1) 

through its Dual, leads to Algorithm 1. Towards this 
end, we first obtain the Dual of problem (1) and then 
solve it using Gradient Projection Method [14][15] and 
derive the abovementioned flow control algorithm. 
Then, we focus on the convergence behavior and other 
aspects of the proposed algorithm. 

 
5.1. Dual Problem 

 
In this part, we will obtain the dual of problem (1). 

Using the standard optimization methods [12], the 
Lagrangian of the problem (1) can be written as: 

ˆ( , ) log ( )s s l ls s l
s l s

L x a x R x cλ λ= − −∑ ∑ ∑           (9) 

where 0lλ >  is the Lagrange Multiplier associated 
with constraint (2) for link l . Usually, lλ  is called 
shadow price [12] for the economic interpretation of 
its role in solving the primal problem through dual. 

Regarding the Lagrangian of problem (1), the dual 
function is defined as [13]:  

( ) sup ( , )
sx

g L xλ λ=                                                   (10)   

where λ  is the vector of positive Lagrange multipliers. 
Thus the dual function is given by: 

 
ˆ( ) max log ( )

ˆ     =max log  

s

s

s s l ls s lx
s l s

s s s ls l l lx
s l l

g a x R x c

a x x R c

λ λ

λ λ

= − −

  − +   

∑ ∑ ∑

∑ ∑ ∑
          

                                                                                 (11) 

By Karush-Kuhn-Tucker (KKT) Theorem [13], we 
can obtain optimal source rates, i.e. 

* *( , )s BEx x s S= ∈ . Duality theory states that when 
the primal problem is convex, strong duality holds and 
thereby the duality gap is zero [13]. In this respect, the 
optimal source rate vector, *x , corresponds to the 
optimal Lagrange multiplier vector, *λ  [13]. In other 
words, if x  is a feasible point of the primal problem, 
which is primal-optimal the corresponding λ  will be 
dual-optimal and vice versa. Therefore, at optimality 
we have 

* *( , )
( , )x x
L x

λ
λ∇ = 0                                                 (12) 

where 0  is a vector with all zero. By taking the 
derivative of (9) with respect to x , we have 
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* *
*

*( , )
0

s

s
ls lx

ls s

aL
R

x xλ
λ

∂
= − =

∂ ∑                             (13) 

*
*

s
s

ls l
l

a
x

R λ
=
∑

                                                        (14) 

Substituting *
sx  into (11) yields  

ˆ( ) (log 1) log( )s s s ls l l l
s l l

g a a a R cλ λ λ
 = − − +   ∑ ∑ ∑                                                     

                                                                             (15) 
The dual problem is defined as [13]: 

0
min ( )g
λ

λ
≥

 

therefore, we have     

0
ˆmin  (log 1) log( )s s s ls l l l

s l l

a a a R c
λ

λ λ
≥

  − − +   ∑ ∑ ∑  

                                                                                 (16) 

It is proven that the dual is always convex regardless 
of convexity or non-convexity of the primal problem 
[13]. Moreover, it is apparent from (16) that, by 
ignoring the mild condition on the positivity of λ , the 
dual problem is unconstrained. As dual problem is 
convex, it admits a unique optimal, i.e. a unique 
minimizer, which can be obtained using iterative 
algorithms. As the dual problem is unconstrained; 
solving (16) using iterative methods is much simpler 
than the primal.  

 
5.2. Solving The Dual Problem 

 
In this part, we will solve the dual problem using 

Projected Gradient Method [13] and derive algorithm 
1.   
   The Projected Gradient Method adjusts shadow 
prices, i.e. Lagrange multiplier vector, in opposite 
direction to the gradient of the dual function, i.e. 

( )g λ∇ , as follows: 

[ ]( 1) ( ) ( ( ))t t g tλ λ γ λ ++ = − ∇                                (17) 

where 0γ >  is a constant stepsize, and 
[ ] max{ ,0}x x+ . Since the objective of problem (1) 
is strictly concave, ( )g λ  is continuously differentiable 
[13], hence ( )g λ∇  exists. Using (15), the l -th 
element of the gradient vector is given by: 

( )
(1 log log( ))

ˆ           +   

s s ls l
s ll l

l l
l

g
a a R

c

λ
λ

λ λ

λ

  ∂ ∂ = − −    ∂ ∂  




∑ ∑

∑
                                     

                                                                                 (18) 

Therefore,  

( ) ˆ ls s
l

sl ls l
l

g R a
c

R
λ
λ λ

∂
= −

∂ ∑∑
                                      (19) 

Regarding (14), (19) can be rewritten as: 

( )

( ) ˆ ( )

ˆ      ( )

l ls s
sl

l s
s S l

g
c R x

c x

λ
λ

λ

λ
∈

∂
= −

∂

= −

∑

∑
                                       (20) 

and the update equation is given by:  

( )

ˆ( 1) ( ) ( ( ))
BE

l l l s
s S l

t t c x tλ λ γ λ

+

∈

   + = − −      
∑           (21) 

where ( )( 1) ( 1),  lt t l Lλ λ+ = + ∈  and ( ( ))sx tλ  is 

the approximate of *
sx  in time t . (14) and (21) 

together forms the proposed algorithm. Therefore, 
algorithm 1 is the iterative solution to problem (1).  

 
5.3. Convergence Analysis 

 
In this part, we investigate the convergence behavior 

of the proposed algorithm. As stepsize has an 
important role in the convergence behavior of the 
update equation, we mainly focus on the effect of 
stepsize. The conditions under which Algorithm 1 
converges and performance analysis of the algorithm 
will be obtained with respect to the choice of stepsize.  

There are several choices for stepsize, each one 
belonging to a predefined category and having certain 
advantages and drawbacks (see [16] and references 
herein). In the family of gradient algorithm for 
distributed scenarios, stepsize is usually chosen to be a 
small enough constant so that to guarantee the 
convergence of the algorithm. Constant stepsize is 
robust in the sense of convergence in time-varying 
conditions and asynchronous schemes. However, it 
usually has slower convergence rate than time-varying 
ones. Due to its simplicity and robustness, in this paper 
we have used a constant step-size. 

Before proceeding to the theorem, we first present 
the fundamental lemma for the gradient optimization 
algorithms.    
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Lemma 1 [14]: Consider the unconstrained 
minimization problem,  
min ( )
x
f x  

with the minimal *x . If ( )f x∇  has Lipschitz 
Continuity property, i.e. there exist L  such that 

1 2 1 2 2
( ) ( )f x f x L x x∇ −∇ ≤ −                             (22) 

then the sequence ( )x t  defined as 

( 1) ( ) ( ( ))x t x t f x tγ+ = − ∇  

converges to the neighborhood of *x provided that 

2
L
ε

ε γ
−

≤ ≤                                                         (23) 

for some 0ε > ,  
 
Proof:  See [14]. 
 

The following theorem, determines the condition on 
the stepsize, under which the Algorithm 1 converges to 
the neighborhood of the optimal of the problem (16) 
and thereby that of problem (1).   
 
Theorem 1: The iterative flow control scheme 
proposed by (14) and (21) converges to a 
neighborhood of the optimal point of the primal 
problem (1) provided that  

2

20 a
c LS

γ< ≤                                                         (24) 

where S is the length of the longest path used by the 
sources, L  is the number of sources sharing the most 
congested link, a  is the minimum weight of sources 
and c  is the upper bound on link capacities. 
 
Proof: Omitted due to space limit. 
 
5.4. Proportional Fairness 

 
Utility function directly influences the policy by 

which system resources, i.e. bandwidth, are shared 
among the competing sources. In this respect, in terms 
of economics terminology, utility function controls the 
fairness among users or sources. Several fairness 
criteria have been defined in the economics which are 
applicable to problem (1). Among them are Max-Min 
Fairness and Proportional Fairness [3]. In a system 
with Max-Min fairness, the resources are mainly 
shared in favor of weak users while in system with 
Proportional Fairness the resources are shared in 
proportion to the resource usage of each source. In the 

latter case, given an optimal source rate allocation 
( )* *,  sx x s S= ∈  satisfying Proportional Fairness, 

with any other feasible source rate, say 
( ),  sx x s S= ∈ , the total proportional net benefit 

gained by the new source rates is decreased [3], i.e.: 
*

* 0s s

s s

x x
x
−

≤∑                                                       (25) 

It is proven, systems with proportional fairness that 
satisfies (25), must have logarithmic utility functions 
[3], i.e.    

( ) logs s sU x x=                                                        (26) 

Thus the proposed flow control algorithm, with equal 
weight factors will be proportionally fair. It is worth to 
note that the case of heterogeneous weight factors 
corresponds to another implementation of fairness, the 
so-called Weighted Proportionally Fair, for which (25) 
turns to be 

*

* 0s s
s

s s

x x
a

x

 −   ≤   
∑                                                (27) 

In the sequel, we briefly discuss about the effect of 
weight factors.  As previously stated, sa  is the weight 
for source s  in the optimization problem which 
controls the priority of source s  in resource sharing. 
To gain more insights on the role of sa  in the flow 
control, we consider a simple network with a single 
bottleneck link, say link l ′ . Since all other links 
doesn’t saturate, we have 0,   l l lλ ′= ≠ . Using (2) 
and (14) we have:  

( )

,      ( )s s
s

l l
l L s

a a
x s S l

λλ ′
∈

′= = ∈
∑

                           (28)             

1
...   , , ( )ji n

i j n l

xx x
i j n S l

a a a λ ′

′= = = = ∈               (29)     

( ) ( )
( )

l
s sl l l l

s S l s S l s
s S l

c
x c a c

a
λ λ ′

′ ′ ′ ′
′ ′∈ ∈

′∈

= ⇒ = ⇒ =∑ ∑ ∑
  (30) 

combining (28)-(29), leads to                          

( )

            ( )i l
i

s
s S l

a c
x i S l

a
′

′∈

′= ∀ ∈
∑

                          (31) 

Therefore, (31) shows that in a network with single 
congested link, the sources passing through the 
congested link, achieve their rates in proportion to 
their weights. For networks with multiple congested 
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links, such an insight might not be easily seen, 
however weight factors influence the capacity sharing 
at bottle neck links. In this respect, we can allocate 
more resources, i.e. link capacity, to some specified 
sources by assigning larger weights to them.   
 
6. Simulation Results 
 
In this section we examine the proposed flow control 
algorithm, listed above as Algorithm 1, for a typical 
NoC architecture. In our scenario, we have used a NoC 
with 4 4×  Mesh topology which consists of 16 nodes 
communicating using 24 shared bidirectional links; 
each one has a fixed capacity of 1 Gbps. In our 
scheme, packets traverse the network on a shortest 
path using a deadlock free XY routing. We also 
assume that each packet consists of 500 flits and each 
flit is 16 bit long.  

In order to simulate our scheme, some nodes are 
considered to have a GS data (such as Multimedia, 
etc.) to be sent while other nodes have a BE traffic. As 
stated before, GS sources will obtain the required 
amount of the capacity of links and the remainder 
should be allocated to BE traffics. Routing policy for 
BE sources is shown in Fig. 1. We assume that all 
sources have logarithmic utility function of the form 

( ) logs s s sU x a x= where sa represents the weight 
factor for source s. In the sequel, we present our results 
in the following parts as below. 

One of the most significant issues of our interest is 
the convergence behavior of the source rates. In this 
part, we have simulated our scheme using 2 different 
values for step-size, 1.05 and 0.2, respectively. Weight 
factor for all sources is assumed to be unity. The 
convergence behavior of source rates for after 150 
iterations is depicted in Fig. 2(a)-(b). Regarding Fig. 
2(a), it’s apparent that for 1.05γ = , after 20 iteration 
steps the source rates will have very little variations, 
however, from Fig. 2(b) , i.e. for 0.2γ = , these 
threshold of iterations will be at least 85 steps. 

In order to have a better insight about the algorithm 
behavior, the relative error with respect to optimal 
source rates which is averaged over all active sources, 
is also shown in Fig. 3. Optimal values are obtained 
using CVX [17] which is MATLAB toolbox for 
solving disciplined convex optimization problems. Fig. 
3 reveals the first step size leads to less than 10% error 
in average just after about 13 iteration steps, and after 
20 steps the average error lies below 5%. However, the 
second step size would reach the two aforementioned 
error margins at the expense of iterating for about 60 
and 75 steps, respectively. Although not shown in Fig. 
3, with much more iteration steps simulation results 

verify that the average error curve for the smaller step 
size lies below that of larger step size. However, for 
practical implementations and real world applications, 
due to faster convergence speed, larger step size is 
more appropriate. 
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Fig. 1. Network Topology and Routing Policy 
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Fig. 2. Source rates convergence with symmetric weight 
factors for (a) 1.05γ =  and (b) 0.2γ =  
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Fig. 3. Average Relative Error 

 
7. Conclusion and Future Works 
 
In this paper we addressed the problem of flow control 
for BE traffic in NoC systems. Flow control was 
considered as the solution to the utility maximization 
problem which was solved indirectly through its dual 
using gradient projection method. This was led to an 
iterative algorithm which can be used to determine 
optimal BE source rates. 
The algorithm can be implemented by a controller 
which admits a light communication and 
communication overhead to the system. We have also 
investigated the convergence behavior of the 
algorithm. Further investigation about the effect of 
delay incurred by the proposed algorithm is the main 
direction of our future studies.   
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