

978-1-4244-1694-3/08/$25.00 ©2008 IEEE

Proportionally-Fair Best Effort Flow Control in
Network-on-Chip Architectures

Mohammad S. Talebi1, Fahimeh Jafari1,2, Ahmad Khonsari3,1,

and Mohammad H. Yaghmaee2
 1 IPM, School of Computer, Tehran, Iran

2 Ferdowsi University of Mashhad, Mashahhad, Iran
3 ECE Department, University of Tehran,Tehran, Iran

mstalebi@ipm.ir, jafari@ipm.ir, ak@ipm.ir, hyaghmae@ferdowsi.um.ac.ir

Abstract

The research community has recently witnessed the
emergence of Multi-Processor System on Chip
(MPSoC) platforms consisting of a large set of
embedded processors. Particularly, Interconnect
networks methodology based on Network-on-Chip
(NoC) in MP-SoC design is imminent to achieve high
performance potential. More importantly, many well
established schemes of networking and distributed
systems inspire NoC design methodologies. Employing
end-to-end congestion control is becoming more
imminent in the design process of NoCs. This paper
presents a centralized congestion scheme in the
presence of both elastic and streaming flow traffic
mixture. In this paper, we model the desired Best
Effort (BE) source rates as the solution to a utility
maximization problem which is constrained with link
capacities while preserving Guaranteed Service (GS)
traffics services requirements at the desired level. We
proposed an iterative algorithm as the solution to the
maximization problem which has the benefit of low
complexity and fast convergence. The proposed
algorithm may be implemented by a centralized
controller with low computation and communication
overhead

1. Introduction

The high level of system integration characterizing

Multi-Processor Systems-on-Chip (MPSoCs) is raising
the scalability issue for communication architectures.
Towards this direction, traditional system
interconnects based on shared busses are evolving both
from the protocol and the topology viewpoint.
Advanced bus protocols acts in favor of better
exploitation of available bandwidth, while more
parallel topologies are instead being introduced in
order to provide more bandwidth [1].

In the long run, many researchers and SoC designers
agree on the fact that this trend approaches the
Network-on-Chip (NoC) as a solution to the lack of

SoCs’ Scalability [2].

A NoC system fundamentally consists of three
components: switches, Network Interfaces (NIs) and
links. The switches can be arbitrarily connected to
each other and to NIs, based on a specified topology.
They are responsible for routing, switching and flow
control logic, as well as error control handling. NIs are
responsible for packetization/depacketization and
implement the service levels associated with each
transaction.

Recently, Quality-of-Service (QoS) provisioning in
NoC’s environment has attracted many researchers and
currently it is the focus of many literatures in NoC
research community. NoCs are expected to serve as
multimedia servers and are required not only to carry
Elastic Flows, i.e. BE traffic, but also Inelastic Flows,
i.e. GS traffic which requires tight performance
constraints such as necessary bandwidth and
maximum delay boundaries.

It’s obvious that a network with data services needs
some mechanisms to avoid congestion. Congestion
Control in data networks is known as a widely-studied
issue over the past two decades. However, it is still a
novel problem in NoCs and to the best of our
knowledge only few works has been carried out in this
field. Congestion control, or equivalently, flow control
in NoCs mainly focuses on the resource constrained
on-chip designs, with the aim of minimizing the
network cost or maximizing network utility while
maintaining the required Quality-of-Service (QoS).

2. Related Works

Flow control for data networks is a widely-studied

issue [3]-[6]. A wide variety of flow control
mechanisms in data network belongs to the class of
End-to-End control schemes, like TCP/IP, which is
mainly based on the window-based scheme. In this
methods, routers and intermediate nodes avoid the
network from becoming congested by means of packet
dropping deterministically (as in DropTail) or

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

randomly (as in RED). Therefore, sent packets are
subject to loss and the network must aim to providing
an acknowledgement mechanism. On the other On-
chip networks pose different challenges. The reliability
of on-chip wires and more effective link-level flow-
control allows NoCs to be loss-less. Therefore, there is
no need to utilize acknowledgment mechanism and we
face to slightly different concept of flow control.

So far, several works have focused on this issue for
NoC systems. In [7], a prediction-based flow-control
strategy for on-chip networks is proposed in which
each router predicts the buffer occupancy to sense
congestion. This scheme controls the packet injection
rate and regulates the number of packets in the
network. In [8] link utilization is used as a congestion
measure and a Model Prediction-Based Controller
(MPC), determines the source rates. Dyad [9] controls
the congestion by using adaptive routing when the
NoC faces congestion.

In this paper, we focus on the flow control for BE
traffic as the solution to a utility-based optimization
problem. To the best of our knowledge, none of the
aforementioned works have dealt with the flow control
problem through utility optimization approach. In our
seminal work [10], we have modeled desired BE
source rates as the solution to a utility-based
optimization problem with general form utility
function and aimed at the issue with solving the
proposed problem using Newton method. In [11], we
also have considered this issue via sum-rate
optimization problem and used a different approach to
solve the problem. This paper we address the
performance analysis of our seminal work [10] with a
special utility function which satisfies Proportional
Fairness feature and solve the flow control problem
using a different approach which leads to low
complexity flow control algorithm for BE traffic in
NoCs.

This paper is organized as follows. In Section 3 we
present the system model and formulate the underlying
optimization problem for BE flow control. In section 4
we proceed to the proposed algorithm and discuss
about some remarks. In section 5 we solve the
optimization problem using an iterative algorithm over
its dual and analyze the convergence behavior of it and
present the underlying theorem of its convergence.
Section 6 presents the simulation results. Finally, the
section 7 concludes the paper and states some future
work directions.

3. System Model and Flow Control
Problem

We consider a NoC architecture which is based on a

two dimensional mesh topology and wormhole
routing. In wormhole networks, each packet is divided
into a sequence of flits which are transmitted over
physical links one by one in a pipeline fashion. A hop-
to-hop credit mechanism assures that a flit is
transmitted only when the receiving port has free space
in its input buffer. We also assume that the NoC
architecture is lossless, and packets traverse the
network on a shortest path using a deadlock free XY
routing [2].

We model the flow control in NoC as the solution to
an optimization problem. For the sake of convenience,
we turn the aforementioned NoC architecture into a
mathematically modeled network, as in [12]. In this
respect, we consider NoC as a network with a set of
bidirectional links L and a set of sources S . A source
consists of Processing Elements (PEs), routers and
Input/Output ports. Each link l L∈ is a set of wires,
busses and channels that are responsible for
connecting different parts of the NoC and has a fixed
capacity of lc packets/sec. We denote the set of
sources that share link l by ()S l . Similarly, the set of
links that source s passes through, is denoted by

()L s . By definition, ()l S l∈ if and only if ()s L s∈ .
As discussed in section I, there are two types of

traffic in a NoC: Guaranteed Service (GS) and Best
Effort (BE) traffic. For notational convenience, we
divide S into two parts, each one representing sources
with the same kind of traffic. In this respect, we denote
the set of sources with BE and GS traffic by BES and

GSS , respectively. Each link l is shared between the
two aforementioned traffics. GS sources will obtain
the required amount of the capacity of links and BE
sources benefit from the remainder.

Our objective is to choose source rates with BE
traffic so that to maximize the weighted sum of the
logarithm of the BE source rates. Hence the
maximization problem can be formulated as [12]:

max log
s

BE

s sx
s S

a x
∈
∑ (1)

subject to:

() ()

BE GS

s s l
s S l s S l

x x c l L
∈ ∈

+ ≤ ∀ ∈∑ ∑ (2)

0 s BEx s S> ∀ ∈ (3)

Optimization variables are BE source rates, i.e.
(,)BEx s Ss ∈ and sa is the weight for source s . We
later on discuss how such a weight determines the
priority of source s in resource allocation. The
constraint (2) states that the sum of BE source rates
passing thorough link l cannot exceed its free

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

capacity, i.e. the portion of lc which has not been
allocated to GS traffic.

In General, problem (1) belongs to the class of
utility-based optimization problems, for which the
utility function, sU , is assumed to be logarithmic, i.e.

() logs s s sU x a x= . Such utility functions, are positive,
concave and strictly increasing, as logarithmic
function does. There are many choices for utility
function, other than logarithmic, with specific features
and behavior. We discuss in section V, that
logarithmic utility function have nice properties in
terms of economic terminology, known as proportional
fairness [3].

It is worth to mention that despite the restriction of
ourselves to a specific utility function, our work can be
easily generalized to arbitrary utility functions, as in
our seminal work [10].

With the model above, problem (1) is a convex
optimization problem with linear constraints. Hence it
admits a unique maximizer [13][14], i.e. there exists
an optimal source rate vector, * *(,)s BEx x s S= ∈ that
maximizes the objective of problem (1) while
satisfying capacity constraints.

Problem (1) is coupled across the network through
its constraints. Such a coupled nature, necessitate
usage of centralized methods like Interior Point
method which poses great computational overhead
onto the system [13][14] and hence is of little interest.

In contrast, there are several low-complexity and
distributive methods to solve unconstrained problems.
Hence, one way to reduce the computational
complexity is to transform the constrained
optimization problem into its Dual, which can be
defined to be unconstrained. According to the Duality
Theory [13][14], each convex optimization
(maximization) problem has a dual, whose optimal
solution, called Dual-Optimal, leads to best bound
(upper bound) of the optimal solution of the main
problem. In this respect, the main problem is
retroactively called Primal Problem. As the dual
problem can be defined in such a way to be
unconstrained, solving the dual is much simpler than
the primal.

For notational convenience, we define:

()

ˆ
GS

l l s
s S l

c c x
∈

= − ∑ (4)

We also define the source rate vector (for BE traffic)
and link capacity vector as (,)s BEx x s S= ∈ and
ˆ ˆ(,)lc c l L= ∈ , respectively. To avoid confusing with
summations indices, we define Routing matrix,
i.e. []ls L SR R ×= , as following:

1 if ()

0 otherwise
BE

ls

s S l
R

 ∈=
 (5)

Using the abovementioned definitions, problem (1)
can be rewritten as:

max log
s

s sx
s

a x∑ (6)

subject to:

ˆRx c≤ (7)

0 s BEx s S> ∀ ∈ (8)

4. Optimal Flow Control Algorithm

In this section, we present a centralized flow control

algorithm for BE traffic in NoC systems which
controls the BE source rates in favor of problem (1).
Later, in section V, we show that solving problem (1)
leads to the proposed algorithm, and therefore the
algorithm is an iterative optimal solution to it. The
proposed flow control algorithm is listed below as
algorithm 1.

In the sequel, we make some worth-mentioning
remarks. Performance analysis of the algorithm is to
be discussed in the next section.

Remarks:
1. Considering algorithm 1 as a centralized

algorithm, we consider a simple controller that can be
mounted in the NoC, whether as a separate hardware
module or a part of the operating system, which is
responsible for running of the algorithm. From
computational aspect, such a controller must have the
ability of carrying out simple mathematical operations,
as in Algorithm 1. Another necessary requirement of
the controller, as Output section of the algorithm 1
suggests, is some links e.g. a control bus, to
communicate the algorithm output to the BE sources.

Although Algorithm 1 is centralized, it can be easily
casted into a distributive one upon introducing low
communication overheads. Thus it can be addressed in
decentralized scenarios, too. However, due to well-
formed structure of NoC Systems, such a centralized
algorithm suits for the system and thereafter we only
focus on the centralized scheme.

2. The proposed flow control algorithm is very

similar to End-to-End congestion control schemes in
data networks, also known as TCP which are widely
used to control BE data flow in the internet. End-to-
End schemes use window-based method, i.e. each

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

 Algorithm 1: Flow Control for BE in NoC

Initialization:

1. Initialize lc of all links.
2. Set link shadow price vector to zero.
3. Set the ε as the stopping criteria.

Loop:
Do until (max (1) ())s sx t x t ε+ − <

1. l L∀ ∈ : Compute new link prices:

[
+

() ()

(1) ()

 () () (())
GS BE

l l

l s s
s S l s S l

t t

c t x t x t

λ λ

γ λ
∈ ∈

+ =

 − − −
∑ ∑

2. Compute new BE source rates as follows

(1)
(1)
s

s
ls l

l

a
x t

R tλ
+ =

+∑

Output:
Communicate BE source rates to the corresponding
nodes.

source maintains a window of packets which are
transmitted, but not acknowledged. Because the
packets in data networks may be lost due to dropping
at the routers or link failure, destination should
acknowledge the ordered receipt of each packet in the
current window. Each source changes its window size
in response to congestion signals, i.e. negative
acknowledges or duplicates ones, and thereby avoids
the network to face congestion. Roughly, the source
rate in each round trip (i.e. the way from source to
destination and back to the source for
acknowledgment), is the ratio of window size to the
round trip time (i.e. duration of the trip).

Although flow control in TCP is carried out by
means of window updates, however we can derive the
corresponding rate updates, too. The proposed flow
control algorithm is very similar to rate update in TCP
scheme. Such a similarity stems from the similarity in
the underlying flow control problem in both schemes.
However, it is worth noting that unlike TCP, in
algorithm 1 we have not considered any window based
transmission and acknowledgement mechanism. This
is due to the fact that NoC architecture is lossless, as
previously stated in section III, and hence all packets
will be delivered successfully and no acknowledgment
is needed.

5. Performance Analysis: Optimal Solution
and Convergence Analysis

In this section, we discuss that solving problem (1)

through its Dual, leads to Algorithm 1. Towards this
end, we first obtain the Dual of problem (1) and then
solve it using Gradient Projection Method [14][15] and
derive the abovementioned flow control algorithm.
Then, we focus on the convergence behavior and other
aspects of the proposed algorithm.

5.1. Dual Problem

In this part, we will obtain the dual of problem (1).

Using the standard optimization methods [12], the
Lagrangian of the problem (1) can be written as:

ˆ(,) log ()s s l ls s l
s l s

L x a x R x cλ λ= − −∑ ∑ ∑ (9)

where 0lλ > is the Lagrange Multiplier associated
with constraint (2) for link l . Usually, lλ is called
shadow price [12] for the economic interpretation of
its role in solving the primal problem through dual.

Regarding the Lagrangian of problem (1), the dual
function is defined as [13]:

() sup (,)
sx

g L xλ λ= (10)

where λ is the vector of positive Lagrange multipliers.
Thus the dual function is given by:

ˆ() max log ()

ˆ =max log

s

s

s s l ls s lx
s l s

s s s ls l l lx
s l l

g a x R x c

a x x R c

λ λ

λ λ

= − −

 − +

∑ ∑ ∑

∑ ∑ ∑

 (11)

By Karush-Kuhn-Tucker (KKT) Theorem [13], we
can obtain optimal source rates, i.e.

* *(,)s BEx x s S= ∈ . Duality theory states that when
the primal problem is convex, strong duality holds and
thereby the duality gap is zero [13]. In this respect, the
optimal source rate vector, *x , corresponds to the
optimal Lagrange multiplier vector, *λ [13]. In other
words, if x is a feasible point of the primal problem,
which is primal-optimal the corresponding λ will be
dual-optimal and vice versa. Therefore, at optimality
we have

* *(,)
(,)x x
L x

λ
λ∇ = 0 (12)

where 0 is a vector with all zero. By taking the
derivative of (9) with respect to x , we have

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

* *
*

*(,)
0

s

s
ls lx

ls s

aL
R

x xλ
λ

∂
= − =

∂ ∑ (13)

*
*

s
s

ls l
l

a
x

R λ
=
∑

 (14)

Substituting *
sx into (11) yields

ˆ() (log 1) log()s s s ls l l l
s l l

g a a a R cλ λ λ
 = − − + ∑ ∑ ∑

 (15)
The dual problem is defined as [13]:

0
min ()g
λ

λ
≥

therefore, we have

0
ˆmin (log 1) log()s s s ls l l l

s l l

a a a R c
λ

λ λ
≥

 − − + ∑ ∑ ∑

 (16)

It is proven that the dual is always convex regardless
of convexity or non-convexity of the primal problem
[13]. Moreover, it is apparent from (16) that, by
ignoring the mild condition on the positivity of λ , the
dual problem is unconstrained. As dual problem is
convex, it admits a unique optimal, i.e. a unique
minimizer, which can be obtained using iterative
algorithms. As the dual problem is unconstrained;
solving (16) using iterative methods is much simpler
than the primal.

5.2. Solving The Dual Problem

In this part, we will solve the dual problem using

Projected Gradient Method [13] and derive algorithm
1.
 The Projected Gradient Method adjusts shadow
prices, i.e. Lagrange multiplier vector, in opposite
direction to the gradient of the dual function, i.e.

()g λ∇ , as follows:

[](1) () (())t t g tλ λ γ λ ++ = − ∇ (17)

where 0γ > is a constant stepsize, and
[] max{ ,0}x x+ . Since the objective of problem (1)
is strictly concave, ()g λ is continuously differentiable
[13], hence ()g λ∇ exists. Using (15), the l -th
element of the gradient vector is given by:

()
(1 log log())

ˆ +

s s ls l
s ll l

l l
l

g
a a R

c

λ
λ

λ λ

λ

 ∂ ∂ = − − ∂ ∂

∑ ∑

∑

 (18)

Therefore,

() ˆ ls s
l

sl ls l
l

g R a
c

R
λ
λ λ

∂
= −

∂ ∑∑
 (19)

Regarding (14), (19) can be rewritten as:

()

() ˆ ()

ˆ ()

l ls s
sl

l s
s S l

g
c R x

c x

λ
λ

λ

λ
∈

∂
= −

∂

= −

∑

∑
 (20)

and the update equation is given by:

()

ˆ(1) () (())
BE

l l l s
s S l

t t c x tλ λ γ λ

+

∈

 + = − −
∑ (21)

where ()(1) (1), lt t l Lλ λ+ = + ∈ and (())sx tλ is

the approximate of *
sx in time t . (14) and (21)

together forms the proposed algorithm. Therefore,
algorithm 1 is the iterative solution to problem (1).

5.3. Convergence Analysis

In this part, we investigate the convergence behavior

of the proposed algorithm. As stepsize has an
important role in the convergence behavior of the
update equation, we mainly focus on the effect of
stepsize. The conditions under which Algorithm 1
converges and performance analysis of the algorithm
will be obtained with respect to the choice of stepsize.

There are several choices for stepsize, each one
belonging to a predefined category and having certain
advantages and drawbacks (see [16] and references
herein). In the family of gradient algorithm for
distributed scenarios, stepsize is usually chosen to be a
small enough constant so that to guarantee the
convergence of the algorithm. Constant stepsize is
robust in the sense of convergence in time-varying
conditions and asynchronous schemes. However, it
usually has slower convergence rate than time-varying
ones. Due to its simplicity and robustness, in this paper
we have used a constant step-size.

Before proceeding to the theorem, we first present
the fundamental lemma for the gradient optimization
algorithms.

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

Lemma 1 [14]: Consider the unconstrained
minimization problem,
min ()
x
f x

with the minimal *x . If ()f x∇ has Lipschitz
Continuity property, i.e. there exist L such that

1 2 1 2 2
() ()f x f x L x x∇ −∇ ≤ − (22)

then the sequence ()x t defined as

(1) () (())x t x t f x tγ+ = − ∇

converges to the neighborhood of *x provided that

2
L
ε

ε γ
−

≤ ≤ (23)

for some 0ε > ,

Proof: See [14].

The following theorem, determines the condition on
the stepsize, under which the Algorithm 1 converges to
the neighborhood of the optimal of the problem (16)
and thereby that of problem (1).

Theorem 1: The iterative flow control scheme
proposed by (14) and (21) converges to a
neighborhood of the optimal point of the primal
problem (1) provided that

2

20 a
c LS

γ< ≤ (24)

where S is the length of the longest path used by the
sources, L is the number of sources sharing the most
congested link, a is the minimum weight of sources
and c is the upper bound on link capacities.

Proof: Omitted due to space limit.

5.4. Proportional Fairness

Utility function directly influences the policy by

which system resources, i.e. bandwidth, are shared
among the competing sources. In this respect, in terms
of economics terminology, utility function controls the
fairness among users or sources. Several fairness
criteria have been defined in the economics which are
applicable to problem (1). Among them are Max-Min
Fairness and Proportional Fairness [3]. In a system
with Max-Min fairness, the resources are mainly
shared in favor of weak users while in system with
Proportional Fairness the resources are shared in
proportion to the resource usage of each source. In the

latter case, given an optimal source rate allocation
()* *, sx x s S= ∈ satisfying Proportional Fairness,

with any other feasible source rate, say
(), sx x s S= ∈ , the total proportional net benefit

gained by the new source rates is decreased [3], i.e.:
*

* 0s s

s s

x x
x
−

≤∑ (25)

It is proven, systems with proportional fairness that
satisfies (25), must have logarithmic utility functions
[3], i.e.

() logs s sU x x= (26)

Thus the proposed flow control algorithm, with equal
weight factors will be proportionally fair. It is worth to
note that the case of heterogeneous weight factors
corresponds to another implementation of fairness, the
so-called Weighted Proportionally Fair, for which (25)
turns to be

*

* 0s s
s

s s

x x
a

x

 − ≤
∑ (27)

In the sequel, we briefly discuss about the effect of
weight factors. As previously stated, sa is the weight
for source s in the optimization problem which
controls the priority of source s in resource sharing.
To gain more insights on the role of sa in the flow
control, we consider a simple network with a single
bottleneck link, say link l ′ . Since all other links
doesn’t saturate, we have 0, l l lλ ′= ≠ . Using (2)
and (14) we have:

()

, ()s s
s

l l
l L s

a a
x s S l

λλ ′
∈

′= = ∈
∑

 (28)

1
... , , ()ji n

i j n l

xx x
i j n S l

a a a λ ′

′= = = = ∈ (29)

() ()
()

l
s sl l l l

s S l s S l s
s S l

c
x c a c

a
λ λ ′

′ ′ ′ ′
′ ′∈ ∈

′∈

= ⇒ = ⇒ =∑ ∑ ∑
 (30)

combining (28)-(29), leads to

()

 ()i l
i

s
s S l

a c
x i S l

a
′

′∈

′= ∀ ∈
∑

 (31)

Therefore, (31) shows that in a network with single
congested link, the sources passing through the
congested link, achieve their rates in proportion to
their weights. For networks with multiple congested

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

links, such an insight might not be easily seen,
however weight factors influence the capacity sharing
at bottle neck links. In this respect, we can allocate
more resources, i.e. link capacity, to some specified
sources by assigning larger weights to them.

6. Simulation Results

In this section we examine the proposed flow control
algorithm, listed above as Algorithm 1, for a typical
NoC architecture. In our scenario, we have used a NoC
with 4 4× Mesh topology which consists of 16 nodes
communicating using 24 shared bidirectional links;
each one has a fixed capacity of 1 Gbps. In our
scheme, packets traverse the network on a shortest
path using a deadlock free XY routing. We also
assume that each packet consists of 500 flits and each
flit is 16 bit long.

In order to simulate our scheme, some nodes are
considered to have a GS data (such as Multimedia,
etc.) to be sent while other nodes have a BE traffic. As
stated before, GS sources will obtain the required
amount of the capacity of links and the remainder
should be allocated to BE traffics. Routing policy for
BE sources is shown in Fig. 1. We assume that all
sources have logarithmic utility function of the form

() logs s s sU x a x= where sa represents the weight
factor for source s. In the sequel, we present our results
in the following parts as below.

One of the most significant issues of our interest is
the convergence behavior of the source rates. In this
part, we have simulated our scheme using 2 different
values for step-size, 1.05 and 0.2, respectively. Weight
factor for all sources is assumed to be unity. The
convergence behavior of source rates for after 150
iterations is depicted in Fig. 2(a)-(b). Regarding Fig.
2(a), it’s apparent that for 1.05γ = , after 20 iteration
steps the source rates will have very little variations,
however, from Fig. 2(b) , i.e. for 0.2γ = , these
threshold of iterations will be at least 85 steps.

In order to have a better insight about the algorithm
behavior, the relative error with respect to optimal
source rates which is averaged over all active sources,
is also shown in Fig. 3. Optimal values are obtained
using CVX [17] which is MATLAB toolbox for
solving disciplined convex optimization problems. Fig.
3 reveals the first step size leads to less than 10% error
in average just after about 13 iteration steps, and after
20 steps the average error lies below 5%. However, the
second step size would reach the two aforementioned
error margins at the expense of iterating for about 60
and 75 steps, respectively. Although not shown in Fig.
3, with much more iteration steps simulation results

verify that the average error curve for the smaller step
size lies below that of larger step size. However, for
practical implementations and real world applications,
due to faster convergence speed, larger step size is
more appropriate.

1 2 3 4

5

9

13 14 15 16

6

10

7

11

8

12

Fig. 1. Network Topology and Routing Policy

(a)

(b)

Fig. 2. Source rates convergence with symmetric weight
factors for (a) 1.05γ = and (b) 0.2γ =

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

Fig. 3. Average Relative Error

7. Conclusion and Future Works

In this paper we addressed the problem of flow control
for BE traffic in NoC systems. Flow control was
considered as the solution to the utility maximization
problem which was solved indirectly through its dual
using gradient projection method. This was led to an
iterative algorithm which can be used to determine
optimal BE source rates.
The algorithm can be implemented by a controller
which admits a light communication and
communication overhead to the system. We have also
investigated the convergence behavior of the
algorithm. Further investigation about the effect of
delay incurred by the proposed algorithm is the main
direction of our future studies.

8. References

[1] L. Benini, and G. DeMicheli, “Networks on Chips: A

New SoC Paradigm.” Computer, 2002, vol. 35, no. 1,
pp. 70-78.

[2] W. J. Dally, and B. Towles, “Route Packets, Not
Wires: On-Chip Interconnection Networks.” Design
Automation Conference, 2001, pp. 684-689.

[3] F. P. Kelly, A. Maulloo, and D. Tan, “Rate control for
communication networks: Shadow prices, proportional
fairness, and stability.” Operational Research Society,
1998, vol. 49, no. 3, pp. 237–252.

[4] S. Mascolo, “Classical control theory for congestion
avoidance in high-speed internet” Decision and
Control IEEE Conference, 1999, vol. 3, pp. 2709-
2714.

[5] Y. Gu, H. O. Wang and L.G. Yiguang Hong
Bushnell, “A predictive congestion control algorithm
for high speed communication networks.” American
Control Conference, vol. 5, pp. 3779-3780, 2001.

[6] C. Yang, and A. V. S. Reddy, “A taxonomy for
congestion control algorithms in packet switching

networks.” IEEE Network, 1995, vol. 9, no. 4, pp. 34-
45.

[7] U. Y. Ogras, and R. Marculescu, “Prediction-based
flow control for network-on-chip traffic.” In
Proceedings of the Design Automation Conference,
2006.

[8] J. W. van den Brand, C. Ciordas, K. Goossens and T.
Basten, “Congestion-Controlled Best-Effort
Communication for Networks-on-Chip.” Design,
Automation and Test in Europe Conference, 2007, pp.
948-953.

[9] Hu. Jingcao, and R. Marculescu, “DyAD - smart
routing for networks-on-chip.” Design Automation
Conference, 2004, pp. 260- 263.

[10] M. S. Talebi, F. Jafari, A. Khonsari, “A Novel Flow
Control Scheme for Best Effort Traffic in NoC Based
on Source Rate Utility Maximization.” In proceedings
of the Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2007.

[11] M. S. Talebi, F. Jafari, A. Khonsari, and M. H.
Yaghmaee, “A Novel Congestion Control Scheme for
Elastic Flows in Network-on-Chip Based on Sum-Rate
Optimization.” International Conference on
Computational Science and its Applications, 2007, pp.
398-409.

[12] S. H. Low, and D. E. Lapsley, “Optimization Flow
Control, I: Basic Algorithm and Convergence.”
IEEE/ACM Transactions on Networking, 1999, vol. 7,
no. 6, pp. 861-874.

[13] Boyd, S., and L. Vandenberghe, Convex Optimization,
Cambridge University Press, 2004.

[14] Bertsekas, D. P., Nonlinear Programming, Athena
Scientific, 1999.

[15] Bertsekas, D. P., and J. N. Tsitsiklis, Parallel and
distributed computation, Prentice-Hall, 1989.

[16] Boyd, S., Convex Optimization II Lecture Notes,
Stanford University, 2006.

[17] Grant, M., S. Boyd, and Y. Ye, CVX (Ver. 1.0RC3):
Matlab Software for Disciplined Convex
Programming. Download available at:
http://www.stanford.edu/~boyd/cvx.

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on February 5, 2009 at 10:47 from IEEE Xplore. Restrictions apply.

