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a b s t r a c t

In a sequence of independent and identically distributed (iid) random variables, the kth
largest (smallest) observation in a partial sample is well-known as the upper (lower) k-
record value, when its value is greater (smaller) than the corresponding observation in the
previous partial sample. In this paper, we consider the k-record statistics at the time when
the nth k-record of any kind (either an upper or lower) is observed, termed as current k-
records. We derive a general expression for the joint probability density function (pdf) of
these current k-records and use it to construct distribution-free confidence intervals for
population quantiles. It is shown that the expected width of these confidence intervals is
decreasing in k and increasing in n. We also discuss the construction of tolerance intervals
and limits in terms of current k-records. Finally, a numerical example is presented to
illustrate all the methods of inference developed here.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Let {Xi; i ≥ 1} be a sequence of iid continuous random variables. The first k observations in this sequence are called the
first partial sample of size k. To achieve the next partial samples, we add the other observations of the interested sequence
to the first partial sample one by one. The kth largest (smallest) observation in a partial sample is called the upper (lower)
k-record statistics, when its value is greater (smaller) than the corresponding observation in the previous partial sample.
Formally, let Xi:m denote the ith order statistic from a random sample of sizem. Then, the upper k-record times Tn,k and the
upper k-record values Un,k are defined as follows: T1,k = k, U1,k = X1:k and for m ≥ 2, Tm,k = min{j : j > Tm−1,k, Xj >
XTm−1,k−k+1:Tm−1,k} and Um,k = XTm,k−k+1:Tm,k . Lower k-record statistics can be defined analogously; see Arnold et al. (1998)
for more details. In the special case when k = 1, we have the usual records. One can imagine situations wherein the largest
and smallest observations are simultaneously recorded when a new record of either kind (upper or lower) occurs, such as
in the case of weather data. These statistics are referred to as current records in the records literature.
Now, suppose U ′n,k and L

′

n,k are the kth largest and kth smallest observations, respectively, when observing the nth k-
record (upper or lower) from the sequence {Xn, n ≥ 1}. We call such recent statistics current k-records. Of course, when
new observations become available, new current k-records can arise. In infinite sequences, every new observation that is
larger (smaller) than the recent upper (lower) current k-record will eventually become a current k-record. For example, let
us consider the following sequence of observations:

3, 2, 2.5, 2.6, 1, 3.7, 2.2, 1.5, 2.7, 2.3, 0.5, . . . .
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The current 3-records extracted from the above sequence are as follows:

n 1 2 3 4 5 6 7 8
U ′n,3 2 2.5 2.5 2.6 2.6 2.6 2.7 2.7
L′n,3 3 2.6 2.5 2.5 2.2 2 2 1.5

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n denote the order statistics of a sample of size n (with n ≥ 2k − 1). The spacing
Wi,j:n = Xj:n − Xi:n is a generalization of the sample rangeWn = Xn:n − X1:n. A special case ofWi,j:n called the quasirange, is
Wk:n = Xn−k+1:n − Xk:n; see Arnold et al. (1992). Let Rm,k(m = k, k+ 1, . . .) denote themth usual record in the sequence of
quasiranges {Wk:n, n ≥ 2k− 1}. Then, it can be seen that Rm,k is themth current k-record range in the {Xn}-sequence given
by

Rm,k = U ′m,k − L
′

m,k, m = k, k+ 1, . . . .

Clearly, Rk,k = 0 and Rk+1,k = Wk:2k. Intuitively, for fixed m, Rm,k+1 < Rm,k with probability one and for fixed k, Rm,k is
increasingly ordered. For fixed k, let Nk(c) denote the stopping time such that Nk(c) = inf{n ≥ k; Rn,k > c}, where c is an
arbitrary fixed number. Then,Nk(c) is thewaiting timeuntil the k-record range of an iid sample exceeds a given value c . Some
works have been done for the special case k = 1; see, for example, Basak (2000), Houchens (1984), Ahmadi and Balakrishnan
(2004, 2005), and Raqab (in press). In this paper, we first develop the distribution theory for the current k-records and then
use it to develop some nonparametric inferential procedures based on current k-records.
The population quantile ξp (0 < p < 1) of the distribution function F is defined by ξp = inf{x : F(x) ≥ p}. Let p

and q be any given real numbers such that 0 < p < q < 1; then,
(
ξp, ξq

)
is called a quantile interval and is given by

{x|p ≤ F(x) ≤ q}. Several authors have discussed construction of confidence intervals for these quantiles and quantile
intervals. Arnold et al. (1992, p. 183) have described how order statistics can be used to provide distribution-free confidence
intervals for population quantiles; see also David and Nagaraja (2003). Ahmadi and Arghami (2003) obtained similar results
based on record data. Ahmadi and Balakrishnan (2004, 2005) developed distribution-free confidence intervals for quantiles
and quantile intervals on the basis of current records. Construction of distribution-free confidence intervals for quantiles
and tolerance intervals on the basis of current k-records is the focus of this paper.
The rest of this paper is organized as follows. In Section 2,we derive some distributional results and in particular a general

expression for the joint pdf of the nth upper and lower current k-records. Confidence intervals for quantiles in terms of
current k-records are then derived in Section 3. In Section 4, we discuss the construction of tolerance intervals and limits on
the basis of current k-records. Finally, in Section 5, we present a numerical example to illustrate all themethods of inference
developed here.

2. Distributions of current k-records

Let {Xi; i ≥ 1} be a sequence of iid continuous random variables. To get the first current k-record, the first partial sample
of size k, {X1, . . . , Xk}, from the above sequence is needed. The kth largest (smallest) observation among them is defined
as the first upper (lower) current k-record. That is, U ′1,k = X1:k and L

′

1,k = Xk:k. If {Xk+1 < L
′

1,k or Xk+1 > U
′

1,k}, then Xk+1
creates the second current k-record. Since U ′1,k < L

′

1,k, the aforementioned event occurs with probability 1, and therefore
Xk+1 certainly induces the second current k-record. Formally, we have U ′2,k = X2:k+1 and L

′

2,k = Xk:k+1, and so U
′

2,k < L
′

2,k.
Therefore, the second current k-record arises by adding only one observation to the first partial sample of size k. The nth
current k-record arises in the same way when n ≤ k+ 1. For example, the (k− 1)th current k-record is then obtained from
the first 2k− 2 observations as U ′k−1,k = Xk−1:2k−2 and L

′

k−1,k = Xk:2k−2. Note that for n < k, we have U
′

n,k < L
′

n,k. Similarly,
the kth current k-record arises from the first 2k− 1 observations such that the kth largest (smallest) observation is the kth
upper (lower) current k-record, i.e., U ′k,k = L

′

k,k = Xk:2k−1. Since the event {X2k < L
′

k,k or X2k > U
′

k,k} occurs with probability
1, X2k induces the (k+1)th current k-record. That is,U ′k+1,k = Xk+1:2k and L

′

k+1,k = Xk:2k, and hence L
′

k+1,k < U
′

k+1,k. Summing
up, we have

L′n,k = Xk:k+n−1 and U ′n,k = Xn:k+n−1, n ≤ k+ 1. (1)

Consequently, when n ≤ k+ 1, each new observation after the first partial sample of size k induces a new current k-record,
but this may be false thereafter. Note that if L′k+1,k < X2k+1 < U

′

k+1,k, then X2k+1 cannot induce a new current k-record and
we then have to wait for an observation Xm (m ≥ 2k+ 1) such that Xm < L′k+1,k or Xm > U

′

k+1,k.
Therefore, for n ≤ k + 1, the joint pdf of the nth value of the kth current records, (L′n,k,U

′

n,k), is readily obtained from
the distributions of order statistics. But, for n > k + 1, the distribution of the nth current k-record does not follow readily
from the distributions of order statistics (see Lemma 1). We therefore had to come up with a new way to derive the joint
pdf of (L′n,k,U

′

n,k)when n > k+ 1. We obtained an expression for this joint density function and this is what is presented in
Theorem 1.
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Lemma 1 (Arnold et al., 1992). Let the ith order statistic from a random sample of size m from the uniform U(0, 1) distribution
be denoted by X∗i:m. Then, the marginal cdf of X

∗

i:m is

FX∗i:m(x) =
m∑
r=i

(m
r

)
xr(1− x)n−r , 0 < x < 1. (2)

For n > k + 1, we have the following theorem for the joint density of the upper and lower current k-records. It may be
noted that for the special case k = 1, the result reduces to the known result for current records presented, for example, by
Houchens (1984).

Theorem 1. Let {X∗i , i ≥ 1} be a sequence of iid U(0, 1) random variables. Then, the joint density of the nth (n > k+ 1) lower
and upper current k-records (L∗

′

n,k,U
∗
′

n,k) is

fn,k(x, y) =
∫ y

x

1
t + 1− y

fn−1,k(t, y)dt +
∫ y

x

1
x+ 1− s

fn−1,k(x, s)ds, x < y. (3)

Proof. Houchens (1984) proved this result for the usual current records (case k = 1). Now, for the nth (n > k+ 1) current
k-record, we have

P(L∗
′

n,k ≤ x,U
∗
′

n,k > y|L
∗
′

n−1,k = t,U
∗
′

n−1,k = s) =


I1, x ≥ t, y < s,
I2, x < t, y ≥ s,
I3, x < t, y ≤ s,
I4, x ≥ t, y > s,

where 0 < x < y < 1 and 0 < t < s < 1. It is evident that I1 = 1 and I2 = 0. Let Z1 be the first observation after
(L∗
′

n−1,k,U
∗
′

n−1,k) from the U(0, 1) distribution. Then,

I3 = P(L∗
′

n,k < x,U
∗
′

n,k > y|Z1 < t, L
∗
′

n−1,k = t,U
∗
′

n−1,k = s)P(Z1 < t)

+ P(L∗
′

n,k < x,U
∗
′

n,k > y|t < Z1 < s, L
∗
′

n−1,k = t,U
∗
′

n−1,k = s)P(t < Z1 < s)

+ P(L∗
′

n,k < x,U
∗
′

n,k > y|Z1 > s, L
∗
′

n−1,k = t,U
∗
′

n−1,k = s)P(Z1 > s).

The event {Z1 < t, L∗
′

n−1,k = t,U
∗
′

n−1,k = s} is equivalent to {L
∗
′

n,k < L∗
′

n−1,k,U
∗
′

n,k = U
∗
′

n−1,k, L
∗
′

n,k
d
= U(0, t)}, where d

=

means identical in distribution. Similarly, the event {Z1 > s, L∗
′

n−1,k = t,U
∗
′

n−1,k = s} is equivalent to {L
∗
′

n,k = L
∗
′

n−1,k,U
∗
′

n,k >

U∗
′

n−1,k,U
∗
′

n,k
d
= U(s, 1)}. The event {t < Z1 < s, L∗

′

n−1,k = t,U
∗
′

n−1,k = s} indicates the fact that the first observation after
(L∗
′

n−1,k,U
∗
′

n−1,k) is not a new current record. Therefore,

I3 =
x
t
× t + I3 × (s− t),

and so we obtain

I3 =
x

t + 1− s
.

Similarly, we can show that

I4 =
1− y
t + 1− s

.

Proceeding now on lines similar to those of Houchens (1984), the expression of the joint pdf of the nth lower and upper
current k-records in Eq. (3) can be derived. �

For n > k+ 1, using Theorem 1, the joint density of the nth upper and lower current k-records can be obtained for all n
in a sequential manner. Though the algebraic calculations are generally too cumbersome, we present here the expressions
for the special cases n = k+ 2 and n = k+ 3, in Lemmas 2 and 3, respectively, when the underlying distribution is U(0, 1).

Lemma 2. Under the assumptions of Theorem 1, we have the following:
(i) The joint pdf of (L∗

′

k+2,k,U
∗
′

k+2,k) is, for 0 < x < y < 1,

fk+2,k(x, y) =
(2k)!

[(k− 1)!]2
{
(1− y)k−1ϕ1(x, y, k)+ xk−1ϕ1(1− y, 1− x, k)

}
, (4)
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where

ϕ1(x, y, k) = −(y− 1)k−1 log(x+ 1− y)+
k−1∑
i=1

(
k− 1
i

)
(y− 1)k−1−i

[
1− (x+ 1− y)i

i

]
. (5)

(ii) The marginal pdf of L∗
′

k+2,k is

fL∗′k+2,k
(x) = Φ(x, k), 0 < x < 1,

where

Φ(x, k) =
(2k)!

[(k− 1)!]2
(−1)k−1

{
x2k−2 [1− x (1− log x)]

+

2k−2∑
i=0

(
2k− 2
i

)
(−x)2k−i−2

(i+ 1)2
[
1− xi+1 (1− (i+ 1) log x)

]
+

k−1∑
i=1

(
k− 1
i

)
(−1)i

i

[
(1− x)2k−i−1

2k− i− 1
−

i∑
j=0

(
i
j

)
xi−j

(1− x)2k−i+j−1

2k− i+ j− 1

]

+

k−1∑
i=1

(
k− 1
i

)
(−x)2k−i−2

i

[
1− x+

xi+1 − 1
i+ 1

]}
. (6)

(iii) The marginal pdf of U∗
′

k+2,k is

fU∗′k+2,k
(x) = Φ(1− x, k), 0 < x < 1,

whereΦ(x, k) is as defined in (6).

Lemma 3. Under the assumptions of Theorem 1, the joint pdf of (L∗′k+3,k,U
∗
′

k+3,k) is, for 0 < x < y < 1,

fk+3,k(x, y) =
(2k)!

[(k− 1)!]2
{
(1− y)k−1ϕ2(x, y, k)+ xk−1ϕ2(1− y, 1− x, k)

}
, (7)

where

ϕ2(x, y, k) = (y− 1)k−1 (log(x+ 1− y))2 − log(x+ 1− y)
k−1∑
i=1

(
k− 1
i

)
(y− 1)k−1−i

[1+ (−1)i]
i

−

k−1∑
i=1

(
k− 1
i

)
(y− 1)k−1−i

i2
[1− (x+ 1− y)i]

+

2k−2∑
i=1

(
2k− 2
i

)
(y− 1)k−1−i

i2
[
1− (x+ 1− y)i (1− i log(x+ 1− y))

]
+

k−1∑
i=1

(
k− 1
i

)
(−1)i

i

2k−2−i∑
j=1

(
2k− 2− i

j

)
(y− 1)k−1−i−j

[1− (x+ 1− y)j]
j

−

k−1∑
i=1

(
k− 1
i

)
(−1)i

i

2k−2−i∑
j=0

(
2k− 2− i

j

)
(y− 1)k−1−i−j

[1− (x+ 1− y)i+j]
i+ j

.

The marginal densities can be readily obtained from (7) by integration.

For other values of n (n ≥ k + 4), the joint density of the nth upper and lower current k-records can be obtained in a
similar recursive manner.

3. Distribution-free confidence intervals for quantiles

As mentioned in Section 2, for n less than, equal to, or greater than k, U∗
′

n,k is less than, equal to, or greater than L
∗
′

n,k,
respectively, with probability 1. Therefore, for n < k, a confidence interval for a quantile is in the form (U∗

′

n,k, L
∗
′

n,k). For n = k,
lower and upper current k-records coincide and consequently a confidence interval cannot be constructed in this case. For



J. Ahmadi et al. / Statistics and Probability Letters 79 (2009) 29–37 33

n > k, a confidence interval is in the form (L∗
′

n,k,U
∗
′

n,k). Next, the coverage probability of the confidence interval based on the
nth current k-record (when n ≤ k + 1) for ξp can be obtained easily from Eqs. (1) and (2). But, when n > k + 1, we can
utilize Theorem 1 (and Lemmas 2 and 3) for determining the required coverage probabilities.

Lemma 4. Let {Xi, i ≥ 1} be a sequence of iid random variables with cdf F and pdf f .
(i) For n < k, the coverage probability of the event {U ′n,k ≤ ξp ≤ L

′

n,k} is

α(n, k; p) =
k−1∑
r=n

(
n+ k− 1

r

)
pr(1− p)n+k−1−r; (8)

(ii) The coverage probability of the event {L′k+1,k ≤ ξp ≤ U
′

k+1,k} is

α(k+ 1, k; p) =
(
2k
k

)
pk(1− p)k. (9)

Proof. Let X∗i = F(Xi), then we immediately have

U∗
′

n,k

(
L∗
′

n,k

)
d
= F(U ′n,k)

(
F(L′n,k)

)
, (10)

where U∗
′

n,k

(
L∗
′

n,k

)
is the nth upper (lower) current k-record statistic associated with X∗i ’s which are iid uniform U(0, 1)

random variables. On the other hand, from Eq. (1), we have for n < k

P{U ′n,k ≤ ξp ≤ L
′

n,k} = P{F(U
′

n,k) ≤ p ≤ F(L
′

n,k)}

= P{U∗
′

n,k ≤ p ≤ L
∗
′

n,k}

= P{U∗
′

n,k ≤ p} − P{L
∗
′

n,k ≤ p}

= P{X∗n:k+n−1 ≤ p} − P{X
∗

k:k+n−1 ≤ p}.

Thus, the expression in (8) follows readily from (2). Eq. (9) can be obtained similarly. �

For n = k+ 2, we obtain the following result.

Lemma 5. Under the assumptions of Lemma 4, the coverage probability of the event {L′k+2,k ≤ ξp ≤ U
′

k+2,k} is

α(k+ 2, k; p) = ϑk(p; k+ 2)+ ϑk(1− p; k+ 2)− 1, (11)

where

ϑk(p; k+ 2) =
(2k)!

[(k− 1)!]2
(−1)k−1

{
p2k−1

2k− 1
−
p2k

2k

(
2k+ 1
2k
− log p

)

+

2k−2∑
i=0

(
2k− 2
i

)
(−1)i

i+ 1

[
p2k−i−1

(i+ 1)(2k− i− 1)
−
p2k

2k

(
1
i+ 1

+
1
2k
− log p

)]

+

k−1∑
i=1

(
k− 1
i

)
(−1)i

i

[
p2k−i−1

2k− i− 1
i
i+ 1

−
p2k−i

2k− i
+

p2k

2k(i+ 1)

]

+

k−1∑
i=1

(
k− 1
i

)
1
i

[
−

p2k−i

(2k− i− 1)(2k− i)
−

i∑
j=0

(
i
j

)
(−1)i

2k− i+ j− 1

×

2k−i+j−1∑
s=0

(
2k− i+ j− 1

s

)
(−1)s

pi−j+s+1

i− j+ s+ 1

]}
. (12)

Proof. As in the proof of Lemma 4, we first write

P(L′n,k ≤ ξp ≤ U
′

n,k) = P(L
∗
′

n,k ≤ p)− P(U
∗
′

n,k ≤ p), n > k.

Next, by Lemma 2, we have

P(U∗
′

k+2,k ≤ p) =
∫ p

0
Φ(1− x, k)dx = 1−

∫ 1−p

0
Φ(x, k)dx = 1− P(L∗

′

k+2,k ≤ 1− p). (13)
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Table 1
Values of α(n, k; p) for some choices of n, k and p

p k n
1 2 3 4 5 6 7 8

1 — 0.180 0.323 0.486 0.647 0.782 0.878 0.938
0.1 2 0.181 — 0.015 0.176 0.337 0.515 0.681 0.811

3 0.271 0.049 — 0.005 0.134 0.286 0.463 0.636

1 — 0.320 0.546 0.726 0.855 0.932 0.972 0.989
0.2 2 0.318 — 0.082 0.385 0.600 0.773 0.888 0.951

3 0.480 0.154 — 0.046 0.309 0.536 0.728 0.862

1 — 0.420 0.694 0.856 0.940 0.978 0.993 0.998
0.3 2 0.418 — 0.185 0.569 0.779 0.902 0.963 0.988

3 0.636 0.264 — 0.136 0.497 0.732 0.878 0.952

1 — 0.480 0.779 0.920 0.975 0.993 0.998 0.999
0.4 2 0.478 — 0.276 0.692 0.879 0.956 0.988 0.997

3 0.720 0.346 — 0.233 0.641 0.854 0.950 0.985

1 — 0.500 0.807 0.940 0.984 0.997 0.999 0.999
0.5 2 0.500 — 0.312 0.735 0.912 0.976 0.995 0.999

3 0.750 0.372 — 0.274 0.695 0.896 0.971 0.993

On the other hand, by using (6), we have

P(L′k+2,k ≤ ξp) =
∫ p

0
Φ(x, k)dx

=
(2k)!(−1)k

[(k− 1)!]2

{∫ p

0
x2k−2dx−

∫ p

0
x2k−1dx+

∫ p

0
x2k−1 log xdx

+

2k−2∑
i=0

(
2k− 2
i

)
(−1)i

(i+ 1)2

[∫ p

0
x2k−2−idx−

∫ p

0
x2k−1dx+ (i+ 1)

∫ p

0
x2k−1 log xdx

]

+

k−1∑
i=1

(
k− 1
i

)
(−1)i

i

[∫ p

0
x2k−2−idx−

∫ p

0
x2k−1−idx+

∫ p
0 x
2k−1dx−

∫ p
0 x
2k−2−idx

i+ 1

]

+

k−1∑
i=1

(
k− 1
i

)
(−1)i

i

[∫ p
0 (1− x)

2k−1−idx
2k− 1− i

−

i∑
j=0

(
i
j

) ∫ p
0 x
i−j(1− x)2k−i+j−1dx
2k− i+ j− 1

dx

]}
,

where∫ p

0
x2k−1(− log x)dx =

∫
∞

− log p
ze−2kzdz = p2k (1− 2k log p)

and ∫ p

0
xi−j(1− x)2k−i+j−1dx =

2k−i+j−1∑
s=0

(
2k− i+ j− 1

s

)
(−1)s

∫ p

0
xi−j+sdx.

So, after some simplification, we obtain

P(L′k+2,k ≤ ξp) = ϑk(p; k+ 2). (14)

Finally, upon using (13), the expression in Eq. (11) is obtained. �

For other values of n (≥ k+ 3), the coverage probabilities of the confidence intervals based on the nth current k-record
for ξp can be derived in a similar manner. Table 1 presents the values of α(n, k; p) for some choices of p, k and n up to 8.
From Eqs. (8), (9) and (11), it can be shown that for all possible n(n ≤ k + 2), α(n, k; p) is symmetric with respect to

p = 0.5. For other values of n, this can be easily deduced. That is, for n > k,

P(L′n,k ≤ ξp ≤ U
′

n,k) = γ0 ⇔ P(L
′

n,k ≤ ξ1−p ≤ U
′

n,k) = γ0;

a similar result can be deduced for n < k. For the special case when k = 1, this corresponds to the results of Ahmadi and
Balakrishnan (2004).
From Table 1, the following points may be observed:

1. For fixed p and k, α(n, k; p) is decreasing for n < k and increasing for n > k;
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2. For fixed p and n, α(n, k; p) is decreasing for k < n and increasing for k > n;
3. For fixed n and k, α(n, k; p) is increasing for p < 0.5 and decreasing for p > 0.5.

Remark 1. It may be noted that for fixed n, the expected width of the confidence interval, viz., E(Rn,k), decreases as k
increases and for fixed k, it increases with n.

4. Tolerance intervals and limits

An interval (A, B) is said to be a 100β% tolerance interval with probability level ν if

P (F(B)− F(A) > β) = ν,

where ν is the tolerance coefficient and the end-points A and B are the tolerance limits. Letting A = −∞ or B = ∞, we
simply obtain the upper or lower tolerance limits, respectively. Here, in this section, we show how the current k-records
can be used to construct tolerance intervals and lower and upper tolerance limits. As was already noted before, for the cases
n < k and n = k+ 1, tolerance intervals can be readily obtained from the order statistics literature; see Arnold et al. (1992)
for more details. For the case when n > k + 1, we can use Theorem 1 for this purpose. For example, for the special case of
n = k+ 2, the corresponding result is presented in Lemma 6. For other values of n (viz., n ≥ k+ 3), a similar result can be
presented, although the ensuing algebraic calculations are quite cumbersome.

Lemma 6. Let {Xi, i ≥ 1} be a sequence of iid random variables with cdf F ; then, (L′k+2,k,U
′

k+2,k) is a 100β% tolerance interval
for population F with tolerance coefficient given by

ν(k+ 2, k) = 2
(2k)!(−1)k−1

[(k− 1)!]2

{
(1− β)2k

4k2(2k− 1)
[1− 2k log(1− β)]

+

k−1∑
i=1

(
k− 1
i

)
(−1)i

i(2k− i− 1)

[
(1− β)2k−i

2k− i
−
(1− β)2k+1−i

2k+ 1− i

]}
. (15)

Proof. By using Eqs. (4) and (10), we have

ν(k+ 2, k) = P
(
F(U ′n,k)− F(L

′

n,k) > β
)
= P

(
U∗
′

n,k − L
∗
′

n,k > β
)

=

∫ 1

β

∫ 1−r

0
fk+2,k(x, x+ r)dxdr

=
(2k)!

[(k− 1)!]2

∫ 1

β

∫ 1−r

0

{
(1− x− r)k−1ϕ2(x, x+ r, k)+ xk−1ϕ2(1− x− r, 1− x, k)

}
dxdr,

where ϕ2(x, y, k) is as defined in (5). Since∫ 1

β

∫ 1−r

0
(1− x− r)k−1ϕ2(x, x+ r, k)dxdr =

∫ 1

β

∫ 1−r

0
xk−1ϕ2(1− x− r, 1− x, k)dxdr,

we get

ν(k+ 2, k) = 2
(2k)!

[(k− 1)!]2

∫ 1

β

∫ 1−r

0
(1− x− r)k−1ϕ2(x, x+ r, k)dxdr

= 2
(2k)!

[(k− 1)!]2
(−1)k

∫ 1

β

∫ 1−r

0
(1− x− r)2k−2 log(1− r)dxdr

+

k−1∑
i=1

(
k− 1
i

)
(−1)k−1

∫ 1

β

∫ 1−r

0
(1− x− r)2k−2 log(1− r)dxdr.

Now, after some algebraic calculations, the expression in (15) is obtained. �

Corollary 1. Under the assumptions of Lemma 6,

(i) (L′k+2,k,+∞) is a lower tolerance limit, and
(ii) (−∞,U ′k+2,k) is an upper tolerance limit
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Table 2
Current k-records extracted from the data set in Arnold et al. (1998, p. 180)

n L′n,1 U ′n,1 L′n,2 U ′n,2 L′n,3 U ′n,3 n L′n,2 U ′n,2 L′n,3 U ′n,3

1 12.69 12.69 12.84 12.69 18.72 12.69 14 4.89 23.92 7.51 21.96
2 12.69 12.84 12.84 12.84 18.72 12.84 15 4.89 27.16 7.51 23.21
3 12.69 18.72 12.84 18.72 12.84 12.84 16 4.83 27.16 6.25 23.21
4 12.69 21.96 12.69 18.72 12.69 12.84 17 4.13 27.16 6.25 23.29
5 7.51 21.96 12.55 18.72 12.55 12.84 18 4.13 30.57 6.25 23.92
6 4.83 21.96 11.80 18.72 12.55 14.28 19 4.13 31.28 4.89 23.92
7 4.83 23.92 7.51 18.72 11.80 14.28 20 – – 4.89 24.95
8 4.83 27.16 7.51 19.19 8.69 14.28 21 – – 4.83 24.95
9 4.13 27.16 7.51 21.46 8.69 14.77 22 – – 4.83 26.81
10 4.13 31.28 7.51 21.96 8.69 18.72 23 – – 4.83 27.16
11 4.08 31.28 4.89 21.96 8.69 19.19 24 – – 4.83 30.57
12 4.08 34.04 4.89 23.21 8.69 21.46 25 – – 4.56 30.57
13 – – 4.89 23.29 7.51 21.46 26 – – – –

Table 3
Confidence intervals for ξp based on the current k-record data in Table 2, with confidence at least 95%

p k (L′n,k,U
′

n,k) α1(n, k; p) p k (L′n,k,U
′

n,k) α1(n, k; p)

0.2 1 (4.83, 23.92) 0.972 0.4 1 (7.51, 21.96) 0.975
2 (7.51, 19.19) 0.951 2 (11.80, 18.72) 0.956
3 – – 3 (11.80, 14.28) 0.950

0.3 1 (4.83, 21.96) 0.978 0.5 1 (7.51, 21.96) 0.984
2 (7.51, 18.72) 0.963 2 (11.80, 18.72) 0.976
3 (8.69, 14.28) 0.952 3 (11.80, 14.28) 0.971

for population F , whose tolerance coefficients are free of F and are given by

ν∗(k+ 2, k; p) = ϑk(1− β; k+ 2),

where ϑk(1− β; k+ 2) is as defined in (14).

Proof. Note that (L′k+2,k,+∞) is a lower tolerance limit whose coefficient can be calculated as follows. From (14), we get

P{1− F(L′k+2,k) > β} = P(L′k+2,k < ξ1−β) = ϑk(β; k+ 2).

Using (13), (−∞,U ′k+2,k) is an upper tolerance limit with coefficient

P{F(U ′k+2,k) > β} = P(L′k+2,k < ξ1−β) = ϑk(β; k+ 2).

Thus, the required result readily follows. �

5. Illustrative example

To illustrate the nonparametric inferentialmethods developed in the preceding sections,we use the following datawhich
represent the records of the amount of annual rainfall in inches at the Los Angeles Civic Center during the 100-year period
from 1890 until 1989; see Arnold et al. (1998, p. 180). The current k-records extracted from these data are tabulated in
Table 2.
From Tables 1 and 2, the confidence intervals with confidence coefficient at least 95% for ξp are obtained for p =

0.2(0.1)0.5, and these are presented in Table 3.
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