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Abstract. In this paper, we obtain some Rosenthal’s type inequali-
ties for negatively orthant dependent (NOD) random variables.

1 Introduction

Let {Xn, n ≥ 1} be a sequence of centered and independent random
variables. Put Sn = X1 + · · · + Xn. Suppose that for all n ≥ 1,
EXp

n < ∞. Rosenthal’s inequality (cf. Petrov [4]) yields the existence
of a positive constant Cp that depends only on p, for which,

E|Sn|p ≤ Cp(
n∑

k=1

E|Xk|p + (V arSn)p/2), p ≥ 2.

Inequalities of this kind are very important since they reduce (for
n sufficiently large) the behaviors of E|Sn|p to those of (V arSn)p/2.
Their main interest is that they give the right bound for integrated
moments in non-parametric estimation (cf. Doukhan [2] for more
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about the interest of those inequalities in probability and statistics.)
Our purpose in this paper is to give versions of such inequalities for
negatively orthant dependent random variables. The definition of
which is as follows.

Definition 1.1. A finite family of random variables is said to be
negatively orthant dependent (NOD) if for all real x1, . . . , xn

P (X1 > x1, . . . , Xn > xn) ≤
n∏

i=1

P (Xi > xi),

and

P (X1 ≤ x1, . . . , Xn ≤ xn) ≤
n∏

i=1

P (Xi ≤ xi).

An infinite family of random variables is NOD if every finite sub-
family is NOD. More about negatively dependent random variables
is found in Bozorgnia et al. [1].

The paper is organized as follows. In Section 2, we give our main
results. In Section 3, we prove the main results.

2 Main results

In this section, we give some versions of Rosenthal’s type inequalities
for sequences of negatively orthant dependent random variables.

Throughout this note, we shall suppose that X1, . . . , Xn is a fi-
nite family of NOD random variables with respective distribution
functions F1, . . . , Fn. Set

Ms,n =
n∑

k=1

E|Xk|s and Sn =
n∑

k=1

EXk.

Theorem 2.1. Let 0 < t ≤ 1 and g(x) be a non-negative even
function, non-decreasing on the positive half-line,and satisfy the con-
dition g(0) = 0. Let Eg(Xk) < ∞, k = 1, 2, . . . , n, then for every
r > 0,

Eg(Sn) ≤
n∑

k=1

Eg(rXk) + 2er
∫ ∞
0

(1 +
xt

rt−1Mt,n
)−rdg(x). (2.1)

2
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Theorem 2.2. Let 1 ≤ t ≤ 2 and EXk = 0, k = 1, 2, · · · , n, under
the assumptions of Theorem 2.1,

Eg(Sn) ≤
n∑

k=1

Eg(rXk) + 2er
∫ ∞
0

(1 +
xt

rt−1Mt,n
)−rdg(x). (2.2)

2

Corollary 2.1. Let 0 < t ≤ 1, p ≥ t. Then

E|Sn|p ≤ C(p, t)(Mp,n + M
p/t
t,n ), (2.3)

where, C(p, t) is a positive constant depending on p and t. 2

Corollary 2.2. Let 1 ≤ t ≤ 2, p ≥ t. If EXk = 0, k = 1, · · · , n,
then

E|Sn|p ≤ C(p, t)(Mp,n + M
p/t
t,n ). (2.4)

2

Corollary 2.3. Let 0 < t ≤ 1, p ≥ t, then

E|Sn|p ≤ C(1 + n
p
t
−1)Mp,n (2.5)

≤ 2Cn
p
t
−1Mp,n ,

and if

n−1
n∑

k=1

P (Xk 6= 0) < 1,

then

E|Sn|p ≤ C(1 + [
n∑

k=1

P (Xk 6= 0)]
p
t
−1)Mp,n , (2.6)

where C = C(p, t). 2

Corollary 2.4. Let 1 ≤ t ≤ 2, p ≥ t and EXk = 0, k = 1, . . . , n.

i) E|Sn|p ≤ C(1 + n
p
t
−1)Mp,n (2.7)

≤ 2Cn
p
t
−1Mp,n

ii) If n−1 ∑n
k=1 P (Xk 6= 0) < 1, then

E|Sn|p ≤ C(1 + [
n∑

k=1

P (Xk 6= 0)]
p
t
−1)Mp,n. (2.8)

2
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Remark. Rivaz et al. [5] obtained some moment inequalities for
NOD random variables. Theorem 3 and Corollary 3 in mentioned
article are results of Corollary 2.1 with t = 1 (without condition
EXn = 0, n ≥ 1) and Corollary 2.2 with t = 2, respectively.

3 Proofs

Proofs are based on the following lemmas.

Lemma 3.1. (see Fakoor and Azarnoosh [3],Theorem 3) Let 0 <
t ≤ 1. Then for any h, x, y > 0

P (|Sn| ≥ x) ≤
n∑

k=1

P (|Xk| ≥ y)+2 exp{x

y
− x

y
log(1+

xyt−1

Mt,n
)}, (3.1)

where

Mt,n =
n∑

k=1

E|Xk|t.

2

It is easy to see that with some changes in the proof of Theorem
3 in Fakoor and Azarnoosh [3], we have the following lemma,

Lemma 3.2. Let 1 ≤ t ≤ 2. If EXk = 0, k = 1, 2, · · · , n, then for
any h, x, y > 0

P (|Sn| ≥ x) ≤
n∑

k=1

P (|Xk| ≥ y) + 2 exp{ehy − 1− hy

yt
Mt,n − hx}.

(3.2)
2

Proof of the main results are the following.

Proof of Theorem 2.1. Put x
y = r, in (3.1), we have

P (|Sn| ≥ x) ≤
n∑

k=1

P (|Xk| ≥
x

r
) + 2er(1 +

xt

rt−1Mt,n
)−r,

then∫ ∞
0

P (|Sn| ≥ x)dg(x) ≤
n∑

k=1

∫ ∞
0

P (|Xk| ≥
x

r
)dg(x) + 2er

∫ ∞
0

(1 +
xt

rt−1Mt,n
)−rdg(x).
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Now by Lemma 2.4. in Petrov [4],we have

Eg(Sn) ≤
n∑

k=1

Eg(rXk) + 2er
∫ ∞
0

(1 +
xt

rt−1Mt,n
)−rdg(x).

This complete the proof. 2

Proof of Theorem 2.2. We set

h =
1
y

log(1 +
xyt−1

Mt,n
),

in the right hand side of (3.2). Since

Mt,n

yt
log(1 +

xyt−1

Mt,n
) ≥ 0, (3.3)

therefore we have,

P (|Sn| ≥ x) ≤
n∑

k=1

P (|Xk| ≥ y)+2 exp{x

y
− x

y
log(1+

xyt−1

Mt,n
)}. (3.4)

Put x
y = r, in (3.4),

P (|Sn| ≥ x) ≤
n∑

k=1

P (|Xk| ≥
x

r
) + 2er(1 +

xt

rt−1Mt,n
)−r,

then∫ ∞
0

P (|Sn| ≥ x)dg(x) ≤
n∑

k=1

∫ ∞
0

P (|Xk| ≥
x

r
)dg(x) + 2er

∫ ∞
0

(1 +
xt

rt−1Mt,n
)−rdg(x). (3.5)

Now, by Lemma 2.4 in Petrov [4], complete the proof. 2

Proof of Corollary 2.1. By putting g(x) = |x|p in Theorem 2.1,
then for p ≥ t,

E|Sn|p ≤ rp
n∑

k=1

E|Xk|p + 2per
∫ ∞
0

xp−1(1 +
xt

rt−1Mt,n
)−rdx. (3.6)

Let

I =
∫ ∞
0

xp−1(1 +
xt

rt−1Mt,n
)−rdx.
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It is easy to see that, for r > p/t

I =
B(p

t , r −
p
t )

t
r

t−1
t

pM
p
t

t,p,

where

B(α, β) =
∫ 1

0
xα−1(1− x)β−1dx α, β > 0

is the Beta function. Substitute I in (3.6) and choose C(p, t) =
max{rp, 2per B( p

t
,r− p

t
)

t r
t−1

t
p}, we obtain the result. 2

Proof of Corollary 2.2. In Theorem 2.2, let g(x) = |x|p,p ≥ t, then

E|Sn|p ≤ rp
n∑

k=1

E|Xk|p + 2per
∫ ∞
0

xp−1(1 +
xt

rt−1Mt,n
)−rdx.

Hence for r > p/t,

E|Sn|p ≤ rp
n∑

k=1

E|Xk|p + 2per B(p
t , r −

p
t )

t
r

t−1
t

p(
n∑

k=1

E|Xk|t)
p
t .

With C(p, t) as the proof of Corollary 2.1. This complete the proof. 2

Proof of Corollary 2.3. Let X1, X2, . . . , Xn are NOD random vari-
ables whit respective distribution functions F1, F2, . . . , Fn and Y be
a random variable with the distribution function n−1 ∑n

k=1 Fk(x). It
is easy to see that, for r > 0

E|Y |r = n−1
n∑

k=1

E|Xk|r,

and

P (Y 6= 0) = n−1
n∑

k=1

P (Xk 6= 0).

Applying Lyapunov’s inequality (cf. petrov [4], page 62), we have

M
p/t
t,n ≤ np/t−1Mp,n. (3.7)

If

n−1
n∑

k=1

P (Xk 6= 0) < 1,
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then by improvement Lyapunov’s inequality,

M
p/t
t,n ≤ [

n∑
k=1

P (Xk 6= 0)]
p
t
−1Mp,n. (3.8)

By applying (3.7) and (3.8) to the right hand side of (2.3), in Corol-
lary 2.1, we have (2.5) and (2.6). 2

Proof of Corollary 2.4. By applling (3.7) and (3.8) to the right
hand side of (2.4), we obtain (2.7) and (2.8). 2
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