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ABSTRACT 
A control-volume numerical approach has been used 
to study rarefaction effects in simultaneously 
hydrodynamically and thermally developing 3D 
micro flows in rectangular channels for Kn ≤ 0.1. The 
effects of velocity slip, thermal creep and temperature 
jump on the key flow parameters are examined in 
detail. Low Reynolds number flows (Re ≤ 1) for 
different channel aspect ratios (0 ≤ α* ≤ 1) are 
considered. The effects of rarefaction on the global 
features of the flow and thermal development in the 
entrance region are studied. Dramatic reductions in 
the friction coefficient are observed in the entrance 
region due to rarefaction effects, which are enhanced 
by thermal creep. For the fluid heating case 
considered here, thermal creep increases slip at the 
wall and thereby further reduces the friction 
coefficient and enhances heat transfer. For an 
identical heat flux applied to the microchannel walls, 
thermal creep effects become more pronounced at 
lower Reynolds numbers since it results in higher 
axial temperature gradients. Present results for        
Kn = 0.1 indicate that the flow and thermal fields are 
greatly influenced by thermal creep at Re = 0.1. 

1. INTRODUCTION 
Increasing the power density and compactness of 
electronic devices requires efficient and powerful 
heat sinks in order to maintain their working 
temperature at acceptable levels. It has been shown 
that extremely high heat fluxes (as high as 790 
W/cm2) can be dissipated by microchannel heat sinks 
[1, 2]. Furthermore, the advantages of miniaturization 
in various micro-electro-mechanical systems for 
bioengineering, fuel cell technologies, lab-on-a-chip, 
etc., emphasize the role of microchannels as key 
components of associated devices. Normally, ducts 

with hydraulic diameters (Dh) less than 100 µm are 
considered microchannels.  

An important effect associated with gas flows in 
microchannels is the rarefaction effect. Rarefaction 
can occur either at low-pressures where the molecular 
mean free path (λ) is large, or in micro devices at 
normal pressures if the characteristic length scale is 
small. In either case, the Knudsen number (Kn) 
which is defined as the ratio of λ to the appropriate 
length scale of the flow, becomes considerable. For 
Kn < 10-3, the classical continuum approach is valid. 
For Knudsen numbers in the range  10-3 < Kn < 0.1 
which is called the slip-flow regime, the standard 
Navier-Stokes and energy equations can accurately 
predict the flow features only when appropriate 
velocity-slip and temperature-jump boundary 
conditions are specified at the walls.  

Slip-flow heat transfer in straight microchannels of 
arbitrary cross section has been the subject of 
numerous studies in the past. Hooman [3] developed 
an analytical approach to investigate fully developed 
(both hydrodynamically and thermally) flows in 
microchannels of arbitrary cross section under a 
constant heat flux boundary conditions. Spiga and 
Morini [4] investigated developing heat transfer in 
rectangular channels of different aspect ratios. They 
reported developing thermal behavior and Nusselt 
numbers for different combinations of heated and 
adiabatic walls. Kuddusi and Çetegen [5] developed a 
mathematical model to study thermally developed 
heat transfer in rectangular microchannels with 
constant heat flux boundary conditions. Nusselt 
numbers for a wide range of Knudsen numbers and 
aspect ratios for different combinations of heated and 
adiabatic walls were reported.  

Another effect associated with rarefied flows is 
thermal creep, which can cause a velocity slip along 
the surface due to a tangential temperature gradient 



  

adjacent to the wall. For cases with sufficiently high 
heat fluxs at the walls, axial temperature gradients 
can considerably influence the flow field. This is 
especially true for very low Reynolds number flows, 
where slip due to the velocity gradients is rather 
small. 

A survey of the available literature shows a limited 
number of studies on thermal creep effects in 
microchannels. Orhan et al. [6] discussed occurrence 
of instabilities for thermal creep flow of rarefied 
gases in rectangular enclosures. Sazhin et al. [7] 
studied the thermal creep phenomenon through 
straight cylindrical capillaries in the free molecular 
flow regime using the DSMC method. Méolans et al. 
[8] developed an analytical model for thermal creep 
flow. They considered a planar microchannel 
between two reservoirs maintained at the same 
pressure while a constant temperature gradient was 
applied along the channel. Rij et al. [9] numerically 
studied fluid flow and heat transfer in the entrance 
region of a planar microchannel. Both thermally and 
hydrodynamically developing slip flows with 
prescribed constant creep velocities were 
investigated. They also presented an analytical 
solution for fully developed flow.  

In the present study, incompressible gaseous slip-
flows and heat transfer in the entrance region of 
rectangular microchannels of various aspect ratios are 
investigated for a prescribed constant heat flux 
boundary condition. Three-dimensional Navier-
Stokes and energy equations along with velocity-slip 
and temperature-jump boundary conditions are 
solved numerically by a control-volume method. The 
effects of thermal creep and axial heat conduction are 
included in the analysis. 

2. FORMULATION 
The flow geometry is as shown in Fig. 1. The 
coordinate system is located in the center of the 
channel and the aspect ratio is denoted by 

a2/h2=∗α .  
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Fig. 1: Flow geometry and the coordinate system 

The hydraulic diameter of the channel is set to unity 
and dimensions of the channel are calculated based 
on the channel aspect ratio and definition of hydraulic 
diameter as Dh = 4(ah)/(a+h). Such a setting 
provides a more convenient base for the comparison 
of results since Dh is used as a length scale for non-
dimensionalization. Standard integral forms of 
continuity, momentum and energy equations for 
constant-property laminar flows are used in modeling 
the fluid flow and thermal field as follows: 
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where V
r

, T, ρ, p, µ, cp and k are the velocity vector, 
temperature, density, pressure, dynamic viscosity, 
specific heat and thermal conductivity, respectively.  

Inflow boundary conditions correspond to uniform 
flat profiles such that  w = Wm = Wi and T = Ti  
where subscripts i and m refer to inlet and bulk mean 
conditions, respectively. For outflow, zero-gradients 
along the axial flow direction are applied for velocity, 
that is 0/ =∂∂ zV

r
. For a constant heat flux condition, 

the axial variation of temperature is linear far from 
the entrance, and therefore, a linear extrapolation is 
used to determine the temperature at the outlet. The 
pressure is set to zero at the outlet while zero pressure 
gradients are assigned at all other boundaries 
including the inlet for the mass-driven flow (Re 
specified) considered in the present work. The flow 
satisfies the velocity-slip and temperature-jump 
conditions at the walls, given by: 
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The other velocity components are specified 
similarly. Here, us is the slip velocity defined as 

wgs uuu −= , where ug represents the gas velocity on 
a wall and uw is the wall velocity. The subscript w 
identifies a wall with a normal coordinate n and 
tangential coordinate s. The subscript g indicates the 
first layer of the gas adjacent to the wall where the 



  

normal and tangential temperature gradients are 
evaluated. The coefficients vσ  and Tσ , known as the 
tangential-momentum and energy accommodation 
coefficients, are usually determined experimentally. 
They are taken as unity in the present study.  

The Reynolds number, Re /m hW Dρ µ= , is based on 
the uniform inlet velocity and the hydraulic diameter 
Dh. The density is constant, and so, Wm = Wi 
everywhere in the channel. The Knudsen number is also 
defined using the hydraulic diameter as  Kn hDλ= . 

3. NUMERICAL METHOD 
Using the control-volume method, the governing 
equations are integrated over corresponding finite 
volumes while they are transformed in a generalized 
non-orthogonal coordinate system. The numerical 
solution is based on a projection-type method that 
solves the momentum equations in two steps. First, 
an intermediate velocity field is obtained using the 
available pressure field. Next, velocity and pressure 
corrections are calculated from a Poison equation 
obtained from the continuity equation. The numerical 
scheme was originally developed by Chorin [10], and 
improved further by Dwyer [11] and the present 
authors [12]. Also, a pressure correction based on the 
conservation of cross sectional mass flux is 
introduced, which greatly enhances the convergence 
rate of the numerical scheme. A pressure defect for a 
given cross section is associated with the average 
velocity defect w′∆ at the same cross section 
according to the following equation: 
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The average velocity defect is defined as 
iWWw −=′∆   where W is the predicted cross 

sectional average velocity. Thus, the pressure filed is 
updated through the above correction and then the 
new velocity field is obtained using the updated 
pressure field. 

4. Grid Independence and Validation 
Numerous computations were performed to study the 
required cross sectional and axial grid resolutions and 
it was found that a mesh size of 1216161 ×× (x, y, z) 
with grid expansion ratios of about 1.06, 1.1 and 1.04 
in the x , y  and  z directions, respectively, provide 
grid independent results. 

The friction factors for fully developed conditions at 
various Knudsen numbers compare very well with 
the results of Morini et al. [13] as shown in Fig. 2 for 
three different aspect ratios.  
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Fig. 2: Comparison of fully developed friction 
factor for various aspect ratios and Kn numbers. 

 

Similarly, the fully-developed heat transfer 
coefficients for a constant heat flux condition have 
been compared with available data in a wide rang of 
Knudsen numbers in Fig. 3, which indicates 
reasonable agreement. The higher numerical 
predictions as compared to the published results can 
be attributed to axial heat conduction, which is 
important for the low the Reynolds number flows 
considered in the present study. 
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Fig. 3: Comparison of fully developed Nu number 
for wide range of Knudsen numbers. 

 

For cases with thermal creep much less information 
is available. The fully developed friction and heat 
transfer coefficients in planar-microchannel flows are 
compared with the analytical results of Rij et al. [9] 
in Fig. 4, where excellent agreement is observed. 



  

Kn

fR
e fd

N
u fd

-0.02 0 0.02 0.04 0.06 0.08 0.1 0.12
6

8

10

12

14

16

18

20

22

3

4

5

6

7

8

9

10

Analytical [9]
Present work

Re = 0.5 , Pr = 1

 
Fig. 4: Comparison of the fully developed friction 
and heat transfer coefficients in the presence of 
thermal creep for a planar microchannel. 

5. RESULTS AND DISCUSSIONS 
In the present study, the Prandtl number is set equal 
to 1 and the non-dimensional heat flux ih kTDqq /′′=  
is prescribes as q = 0.007. Also, z+ = z/(DhRe). 

5.1 The Flow Field 
Thermal creep does not influence the flow field 
significantly at Re = 1. However, at lower Re, 
thermal creep can affect the slip flow pattern 
considerably, especially close to the channel inlet, as 
shown in Fig. 5 where the axial velocity contours are 
plotted in the symmetry plane (x = 0) for (a) Re = 1 
and (b) Re = 0.1 in a square microchannel. Clearly, 
the developing flow pattern at Re = 0.1 is much 
different from that for Re = 1. Two distinct regions 
can be identified for the Re = 0.1 case. Close to the 
inlet thermal creep effects are dominant due to high 
axial temperature gradients and low fluid temperature 
at wall, and therefore, the region of high velocity is 
near the wall such that the uniform inlet velocity 
profile transforms into a parabola with the minimum 
velocity in the core region and maximum velocity at 
the wall. This is clearly seen in Fig. 6 where the 
evolution of the axial velocity profiles are plotted at 
different axial locations. For further clarity, different 
stages in the profile development are shown 
separately in Fig. 6. About 12% increase in the axial 
velocity component from the uniform inlet velocity 
occurs near the wall due to strong slip effects at the 
axial location of z+ = z/(DhRe) = 5.162 in Fig. 6(a). 
However, farther down stream, where the axial 
temperature gradient approaches a constant value, 
thermal creep effects lose their strength and velocity 
profile converts from the inverted parabola to a flat 
profile (Fig. 6b, z+ = 17.21), which latter (Fig. 6c,    
z+ = 50) transforms into the conventional parabolic 
velocity profile with a large velocity slip of about 
84% of the inlet velocity. 
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Fig. 5: Axial velocity contours in the symmetry 
plane of a square microchannel for Kn = 0.1, and 
(a) Re = 1, (b) Re = 0.1 
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Fig. 6: Effects of thermal creep on axial velocity 
profiles in a square microchannel at Re = 0.1 and 
Kn = 0.1 at different axial locations.  z+ = z/(DhRe). 

 

In Figs. 7 and 8, three dimensional streamwise 
velocity profiles for Re = 1 and Re = 0.1 are shown at 
several axial locations, respectively. These figures 
show the three dimensional structures of different 
velocity profiles in their deformation from a uniform 
inlet profile to their fully developed form. These 
velocity profiles, which are self explanatory, are cut 
in their symmetry plane for clarification purposes. 
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Fig. 7: The 3-D streamwise velocity profiles for Re 
= 1, Kn = 0.1 at axial locations: (a) z+ = 1.052E-02, 
(b) z+ = 0.104, (c) z+ = 0.258 and z+ = 1.007. 
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Fig. 8: The 3-D streamwise velocity profiles for Re 
= 0.1, Kn = 0.1 at axial locations: (a) z+ = 1.052E-
02, (b) z+ = 0.104, (c) z+ = 0.258 and z+ = 1.007. 

 
The dimensionless pressure drop along the channel is 
expressed in the form of an apparent friction factor 
defined as: 
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where p∆ indicates the pressure drop from the 
entrance. In addition to the wall shear stress, which is 
the only source of the pressure drop in fully 
developed region, the change in the momentum rate 
accounts for a major portion of the pressure drop in 
the entrance region. Figure 9 shows the variation of 
the apparent friction factor with Kn at Re = 1 along 
the channel. For comparison, cases with thermal 
creep are identified with a circle in this figure. Major 
reduction in the apparent friction coefficient in the 
entrance region can be attributed to two factors.  Slip 
reduces the wall shear stresses and at the same time 
less pressure drop is required for transforming the 
velocity profile from uniform inlet profile to the fully 
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Fig. 9:  Axial variation of apparent friction factors 
with and without thermal creep. z+ = z/(DhRe). 

 

developed profile (since fully developed velocity 
profiles are much flatter as compared to those with 
the no-slip condition). These two factors result in 
lower friction coefficients at higher Kn numbers. 
Both factors are slightly enhanced when the 
contribution of thermal creep is considered. The 
change of fully developed fRe for variation of Kn 
number from 0.0 to 0.1 at Re = 1 is about 44% in a 
square duct while this value increases to 48% for a 
duct with aspect ratio of 0.2.  Thermal creep further 
reduces the fully developed friction coefficients by 
almost 2% for Kn = 0.1 in a square duct at Re = 1. 

5.2 The Temperature Field 
The temperature field in rarefied flows is a function 
of geometry, Re, Pr and Kn numbers. For the 
prescribed constant heat flux boundary condition, a 
dimensionless temperature can be defined as: 
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where Tref is a reference temperature. The non-
dimensional temperature profile can reveal different 
features depending on the choice of the reference 
temperature as will be discussed later. In Fig. 10, 
cross-sectional temperature distributions are 
compared for the slip and no-slip cases at Re = 1. 
Three different axial locations in a square 
microchannel are considered. For this case, the inlet 
temperature Ti  is taken as the reference temperature 
and the dashed lines on the right hand side indicate 
the slip case with Kn = 0.1 while the solid lines refer 
to the no-slip case. This figure indicates almost 
similar temperature distributions for both the slip and 
no-slip flows close to the entrance, however in the 
fully developed region, the core is slightly warmer in 
the slip case as compared to the no-slip case.  
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Fig. 10: Cross-sectional temperature distributions 
for flow in a square duct at Re = 1. Solid lines    
Kn = 0; dashed lines Kn = 0.1;  (a) z+ = 7.295E-4   
(b) z+ = 7.720E-3   (c) z+ = 1.922 

 

A better view of the entrance thermal development 
can be obtained through the axial variations of the 
temperature profiles in the symmetry plane as shown 
in Fig. 11. In this figure, the local wall temperature 
has been used as Tref . Note that using Ti as the 
reference temperature in the definition of the non-
dimensional temperature cannot reveal the 
temperature jump at the wall. Furthermore, non-
dimensional temperature profiles based on Ti as 
reference temperature do not lead to a fixed profile in 
the fully developed region. Using local wall 
temperature as the reference temperature provides a 
base to present the wall temperature jump and leads 
to a fixed profile in the fully developed region. The 
only drawback of such a choice is that the reference 
temperature is not constant across the temperature 
field. 

The effects of thermal creep on the temperature 
profiles are also shown in Fig. 11 where on the right 
half of the temperature profiles (shown by dashed 
lines) the thermal creep effect is included, while on 
the left side (shown by dotted lines) thermal creep is 
ignored. Despite the variation in the temperature 
profiles corresponding to their axial locations in the 
symmetry plane, the temperature jump is identical at 
all axial locations. This is due to the fact that local 
wall temperature has been used as the reference 
temperature along with the constant heat flux 
boundary condition. For such a case, temperature 
jump is only a function of Knudsen number.  
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Fig. 11:  Axial variation of non-dimensional 
temperature profiles in the symmetry plane of a 
square microchannel for Re = 1 in slip and no-slip 
flows;  z+ = z/(DhRe) = 5.096E-2, 0.206, 0.402 and 
2.00 with increasing θ, respectively. 

 
The maximum temperature difference ∆θ between 
the core and the immediate vicinity of the wall is 
about 0.33 for Kn = 0.1, while this value increases to 
about 0.4 for Kn = 0. Apparently, at Re = 1, thermal 
creep does not affect the temperature distributions in 
the flow direction noticeably. However, at Re = 0.1, 
the temperature field is significantly influenced by 
thermal creep as shown in Fig. 12. 
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Fig. 12: Axial variation of non-dimensional 
temperature profiles in the symmetry plane of a 
square microchannel for Re = 0.1 and Kn = 0.1. 

 
The same flow conditions and axial locations as those 
in Fig. 6 are used here. It is seen that the uniform 
inlet temperature profile undergoes a continuous 
transformation along the channel until it reaches its 
maximum value in the center corresponding to the 
flat velocity profile in Fig. 6(b). Farther down stream, 
the maximum temperature decreases gradually 
approaching to its fixed fully developed profile at 
about z+ = z/(DhRe) = 50. Again, the symmetry plane 
is considered and local wall temperature has been 



  

used as Tref . The circumferentially-averaged local 
heat transfer coefficient for the peripherally uniform 
heat flux boundary condition is defined as: 
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where Tm is the mean bulk temperature and Tw is the 
cross sectional averaged wall temperature defined as: 
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where P is the perimeter, Tw,l is the local wall 
temperature, ds is a circumferential differential 
element and  A  is the cross sectional area. 

Fig. 13 shows the axial variations of the heat transfer 
coefficients in a square microchannel for Re = 1. It is 
seen that the rarefaction effects dramatically reduce 
the heat transfer coefficient in the entrance region. 
There are two opposing effects regarding heat 
transfer. First, enhanced advection in the immediate 
vicinity of the wall due to velocity slip tends to 
increase heat transfer, and second, temperature jump 
at the wall which acts similar to contact resistance 
tends to reduce heat transfer. The net effect is a 
reduction in heat transfer since the temperature jump 
effects outweigh the enhanced advection effects. 
Unlike the friction coefficient, the inclusion of 
thermal creep, which further enhances advection, 
does not appear to affect the heat transfer coefficient 
significantly. Fully developed  values  of  the  Nusselt 
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Fig. 13: Axial variation of the heat transfer 
coefficient for flow in a square microchannel at   
Re = 1 and various Kn. 
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Fig. 14: Rarefaction and thermal creep effects on 
fully developed heat transfer coefficients 

 

number for slip flow at Re = 1 are shown in Fig. 14 
for square and rectangular microchannels with aspect 
ratios of 1 and 0.5, respectively. For the case of fluid 
heating, thermal creep is expected to increase the heat 
transfer rates. Yet this effect is fairly small at Re = 1 
for both aspect ratios.  

As discussed before, the velocity and temperature 
fields are very significantly influence by thermal 
creep at lower Reynolds numbers, and therefore, it is 
useful to compare the axial variation of Nu at two 
deferent Reynolds numbers as shown in Fig. 15, 
where the heat transfer coefficients are plotted for 
flow in a square microchannel at Re = 0.1 and 1. At 
lower Reynolds numbers, the increase in advection 
effects near the wall due to thermal creep in addition 
to the decrease in temperature jump (because of 
flatter temperature profiles) results in a considerable 
increase in Nu along the microchannel. In the fully 
developed region thermal creep at Re = 0.1 causes an 
increase of about 39% in the heat transfer coefficient 
as compared to its counterpart at Re = 1. 
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Fig. 15: Comparison of Nusselt number variation 
in a square microchannel at Re = 0.1 and 1. 



  

6. CONCLUSIONS 
Rarefaction and thermal creep effects on the flow and 
thermal development from uniform inlet profiles are 
numerically examined in the slip-flow regime,        
Kn ≤ 0.1. Different channel aspect ratios for 
Reynolds numbers of 0.1 and 1 with Pr = 1 are 
considered. Developing velocity profiles and thermal 
patterns in the entrance region are presented in detail. 
The effects of thermal creep, which are directly 
related to the applied heat flux, are studied on the 
main flow parameters including the friction factor 
and the heat transfer coefficient. Dramatic reductions 
in the friction coefficient are observed in the entrance 
region due to rarefaction, which are enhanced by the 
effects of thermal creep. 

Besides the axial temperature gradient at the wall, 
thermal creep effects are also related to the fluid 
heating or cooling process. For heating cases, which 
are considered here, it improves velocity slip at the 
wall, and therefore, reduces further the friction 
coefficient and enhances the heat transfer rates. For 
an identical heat flux applied to the microchannel 
walls, thermal creep effects become more effective at 
lower Reynolds number since it results in higher 
axial temperature gradients at the wall. Present results 
indicate that the flow and thermal fields are greatly 
influenced by thermal creep at Re = 0.1 under highly 
rarefied condition, Kn = 0.1.  Further investigations 
are needed to identify the thermal creep effects in 
flows where the fluid is being cooled.  
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