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ABSTRACT 
Three-dimensional time-dependent incompressible 
Navier-Stokes equations are numerically solved in a 
body fitted coordinates system to study the pulsatile 
blood flow in a human aortic arch. A projection-type 
method is employed and to accelerate the numerical 
convergence of the flow field at each time step, two 
new pressure corrections are applied. First correction 
is based on the acceleration of the entry flow and the 
second one is designed to satisfy the continuity of 
mass fluxes in every cross section. A rescaled 
Newtonian model has been employed to predict the 
non-Newtonian blood behavior. Flow patterns in 
rescaled Newtonian fluid are studied in several 
section of the artery. The wall shear stresses, which 
are of much importance in the initiation of vascular 
diseases, are studied for both Newtonian and rescaled 
Newtonian fluid. The results indicated that inner 
regions close to the inlet of the aorta arch, with high 
wall shear stress values are vulnerable sites to the 
initiation and development of thrombus formation 
lesions which leads to atheroembolic stroke. On the 
other hand, regions with low values of WSS along 
the inner and outer walls are most susceptible to 
genesis of atherosclerosis disease. Present results 
indicate that the rescaled Newtonian model greatly 
influenced the axial velocity profiles and WSS 
distributions. 

1. INTRODUCTION 
Over the past decades, a large number of novel 
numerical methods have been proposed to analyze 
blood flow for understanding the relationship 
between vascular diseases and hemodynamics. 
Among the major challenges in blood flow 
computations are: the complex and variable geometry 
of the cardiovascular system; the complex and 
nonlinear material properties of the vessel walls; the 
pulsatile nature of blood flow; and the non-
Newtonian viscous nature of blood [1] 
In addition, it is also necessary to consider biological 
complexities in the analysis of blood flow with 

respect to diseases processes. Hemodynamic factors 
that have been suggested to be important in the 
initiation and development of vascular diseases are 
derived from the velocity field and involve several 
different forms, such as flow separation and vortex 
formation, shear stresses, and spatial and temporal 
shear stress gradients [2, 3]. It is well accepted that 
locations, where shear stresses are low or change 
rapidly in time and space are most vulnerable. These 
conditions are likely to prevail at places, where the 
vessel is curved, bifurcates, has a junction, side 
branch, or sudden change in flow geometry, and the 
flow is unsteady [2].  
Aortic system is well known example of these 
vulnerable sites that is studied to understand the 
development of vascular diseases such as 
atherosclerosis and their dependence on flow 
structure [4-8]. Yet, most of the studies have 
considered blood as a Newtonian fluid. It is 
commonly assumed that the Newtonian model is a 
valid approximation for the rheological behavior of 
blood in large arteries. However, some investigations 
have shown that this is not a reliable assumption in 
some locations such as junctions, branches and 
curved arteries [9-12]. In general, blood behaves as a 
Newtonian fluid for high shear rate values, and as a 
non-Newtonian fluid for low values [12, 13]. 
Therefore, the non-Newtonian behavior must be 
considered in oscillatory flows, where the velocity 
gradient goes to zero at some part of the cycle during 
the period [2]. Also, it has been pointed out that in 
some diseased conditions such as patients with sever 
myocardial infarction, cerebrovascular diseases and 
hypertension, blood exhibits remarkable non-
Newtonian properties [14].  
Several authors have reported constitutive equations 
for the description of the shear thinning behavior of 
blood. In some studies Carreau–Yasuda model is 
used [15-20]. Sankar et al. [14] assumed blood as 
Casson fluid and Herschel–Bulkley fluid. Hernan et 
al. [21] employed Casson, Power-Law and Quemada 
models. In all studies significant differences in axial 
velocity profiles, secondary flows streamlines and 
WSS values between the non-Newtonian and 



  

Newtonian fluid flows are revealed. Therefore a 
simple Newtonian fluid model for the blood may lead 
to false interpretation of experimental observations, 
particularly when complex vascular geometries are 
considered. 
A standard constitutive equation is still not available 
which accurately describes the blood viscous 
properties under all flow conditions [15]. In order to 
predict the non-Newtonian behavior of blood, a 
rescaled Newtonian model is applied in the present 
study. The rescaled Newtonian flow is found to give 
reasonable representation of the non-Newtonian flow 
in most situations. [15-20]. 

2. METHOD 

2.1 Geometry 
The main systemic artery from the heart is the aortic 
arch, a 3D bend twisting about 180o, as shown in   
Fig. 1, which is adopted here as the flow geometry. 
The aorta is the main trunk of a series of vessels 
which convey the oxygenated blood to the tissues of 
the body for their nutrition. It is described in several 
portions, viz., the ascending aorta, the arch of the 
aorta, and the descending aorta, which last is again 
divided into the thoracic and abdominal aorta [7]. In 
the present study, according to the [7-9], the radius of 
the arch is set to 30 mm and the diameter of the 
vessel is assumed to be constant and equal to 24mm 
uniformly. The ascending and the descending aorta 
are considered 5 and 10 cm in length, respectively. 
The model neglects the main aortic branches and 
minor blood vessels leaving the aorta. 

2.2 Rescaled Newtonian model 
The shear thinning behavior of the blood has been 
approximated using a rescaled viscosity based on a 
characteristic shear rate ( )cγ&  of the flow. However, 
there is no universally accepted definition of the 
characteristic shear rate. Some use the wall shear 
rate, which is often the highest shear rate occurring in 
blood flow [22, 23]. Others use the averaged shear 
rate in the artery, which has also been adopted in the 
present study [15-20]. 
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where V is the mean inlet velocity and D is the 
diameter of the artery.  
To obtain the characteristic viscosity,η , the Carreau–
Yasuda shear thinning model is used [16]: 
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Fig.1. Aortic geometry and the coordinates system.   

 
The parameters in Eq. (2) are obtained from 
experimental data provided by [16] as: 

3102.2 −
∞ ×=η Pa.s, 3

0 1022 −×=η Pa.s, 11.0=λ s, 

644.0=a , 392.0=n and 3/1050 mkg=ρ . 

2.3 The Governing Equations  
The Governing Equations are the time-dependent 
incompressible Navier–Stokes equations in integral 
form as: 
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where ρ  is the density of the fluid, V
v

is the velocity 
vector, p  is the pressure, and µ  is the viscosity.  
At the aortic inlet, a realistic pulsatile waveform was 
used based on experimental data reported by     
Pedley [24] as shown in Fig. 2. The Maximum 
velocity of cycle is 0.262 ms-1 and the Minimum 
velocity is -0.043 ms-1. Zero gradients at the outlet 
are considered. Flow in the aorta is mainly laminar. 
For pulsating flow, turbulence may occur for a 
Reynolds number much larger that expected for 
steady flow. This is due to the fact that an 
accelerating flow is more stable than steady flow; 
also the decelerating flow is more unstable than 
steady flow. This can create bursts of turbulence 
during the decelerating phase [4]. Nerem et al. [25] 
found a critical Reynolds number for unsteady flows 



  

in the form of α×= KcRe , where K is a constant 
ranging from 250 to 1000, and α is the frequency 
number defined as: 

2/1)2(
Tv

R πα =  (5) 

where R is the artery radius, T = 1s is the period time 
of inlet flow pulse and ν is the kinematic viscosity of 
the fluid. In the present study the maximum α  is 
about 16.47, and the maximum Re based on the 
maximum inlet velocity, maxU , is much below the 
threshold Rec.  
 

t/T

U
i/

U
m

ax

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Uave

Maximum
Accelertion

Maximum
Deceleration

Maximum
Velocity (Umax )

Minimum
Velocity

1 2

(II)

(I) (III)

(IV)

 
Fig.2. Dimensionless inlet velocity waveform 

and four important cycle positions. 

2.4 The Numerical Algorithm  
A projection-like method is used to solve the 
governing equations in generalized coordinates. The 
major problem during incompressible flow field 
solution appears to be the pressure term. It is well-
known that the overall efficiency of a method for 
solving the incompressible Navier–Stokes equations 
largely depends on the approach adopted to solve a 
pressure correction equation such as Poisson 
equation. An accurate solution to the Poisson 
equation for incompressible flow can be too 
expensive in three dimensional forms. Following 
Dwyer et al. [26] two new pressure corrections are 
employed to improve the convergence performance 
of the Poisson equation solver. The corrections are 
based on the physical considerations of the inlet mass 
flow acceleration and preserving mass flow rate at 
each cross section.  
The pressure correction, p′ , corresponding to the 
inlet mass flow acceleration is obtained according to 
the following expression: 
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where iU  is inlet velocity and s is the streamline 
direction. The second pressure correction, p ′′ , is 
obtained based on the local velocity defect as: 
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where the local velocity defect at each cross section 
is defined as: 
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where A  is pipe cross sectional area. 
The overall solution is obtained through the 
following procedure: 

1- Determine the he time dependent pressure 
term, p′ , in each time step by solving the 
Eq.(6).  

2- Solve the momentum equations 
with ppn ′+ , where np is old pressure field.  

3- Determine the local velocity defects and 
pressure correction p ′′ . 

4- Solve the momentum equations with the full 
pressure field, pppn ′′+′+ . 

5- Finally, solve the Poisson equation to obtain 
the new pressure field. 

Using this method dramatically enhances the 
convergence rate in pulsatile flows. 

3. RESULTS 

3.1 Validations  
The present numerical scheme has been compared 
with the results of Dwyer et al. [26] for an unsteady 
flow in an 180o curved pipe with ascending and 
descending parts. A sinusoidal inlet velocity 
waveform is considered for frequency number of 15. 
3-D axial velocity profiles at a cross section located 
in the middle of the curve are compared in Fig. 3 for 
specified points on the inlet velocity waveform. 
Results show reasonable agreement with the 
maximum difference less than 6%.  

3.2 Rescaled-Newtonian model results 
A characteristic viscosity, η , based on Eq. 2, yields a 
value of 11.35×10-3 Pa s, which has been used in the 
evaluation of Re and frequency number,α . 
Fig. 4a shows the sections and regions of interest in 
describing the flow patterns throughout the geometry. 
These sections are the aortic arch entrance (section 
B), mid way along the aortic arch (section C), aortic 
arch exit (section D), mid way along the descending 
aorta (section E) and descending aorta outlet (Section 
F). The  3-D  axial  velocity profiles at above sections 
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Fig. 3.  Comparison of 3-D axial velocity profiles, left 

column [26], right column present results. 
 
and important positions of the cycle corresponding to 
the points of: (I) maximum flow acceleration, (II) 
maximum flow velocity, (III) maximum flow 
deceleration, and (IV) minimum flow velocity (see 
Fig.2), are shown in Fig. 4b. The axial velocity 
profiles have been normalized with the maximum 
inlet velocity, maxU , and rotated according to their 
actual position in the artery for more clarification. 
The results demonstrate that for the time points with 
positive inlet velocity (I, II and III), the flow at the 
first half of aorta (cross-sections B and C) is skewed 
toward the inner aortic wall. This vortical type 
velocity profile has been induced due to the curvature 
of the geometry. Aortic curvature gradually changes 
the velocity profiles in sections C and D, resulting in 
an M-shaped velocity profile. Far downstream the 
aortic arc the flow is sharply skewed toward the outer 
wall of the aorta (cross-sections E and F).  

In all sections, corresponding to the minimum 
velocity point (IV), velocity contours within the aorta 
exhibit different behavior from those at the other 
points in the cardiac cycle, due to the presence of 
major reverse flow.  
Wall shear stress is likely the most relevant fluid 
mechanical parameter related to the initiation and 
development of some vascular diseases, which is 
presented in non-dimensional form as: 

maxU
RWSS w

µ
τ

=  (9) 

here, wτ  is the dimensional wall shear stress, R is the 
aortic radius, µ  is the fluid dynamic viscosity and 

maxU  is the maximum inlet velocity waveform.  
The low and high wall shear stresses affect the 
histology and function of the endothelial cells in 
different ways. Exposure of the arterial wall to a 
relatively low wall shear stress may increase 
intercellular permeability and consequently increase 
the vulnerability of these regions to atherosclerosis 
[29]. On the other hand, high wall shear stresses and 
recirculation regions are believed to promote the 
thrombus formation, which is due to the rupture of a 
plaque or denudation of the endothelium overlying a 
fibrous plaque leading to atheroembolic stroke [4]. 
Fig. 5 shows the variations of WSS at the point of 
maximum inlet velocity waveform along the outer, 
inner and upper walls. Locations of these lines are 
shown in Fig. 4a.  
The maximum value of WSS occurs inside the aortic 
arch, extending from 0.05 to 0.144m, along the inner 
wall close to the arch inlet. The spike occurs due to 
cross flow circulation towards the inner wall and 
shifting the point of local maximum velocity to the 
inner wall as can be seen from velocity profiles at 
sections B-II and C-II of Fig. 4b. The wall shear 
stress then shifts towards the outer wall as the flow 
progresses down-stream into the descending aorta. 
This shift in wall shear stress from the inner to the 
outer wall has also been confirmed by experimental 
observations [27, 28]. The region, where the shift 
occurs is expected to be a vulnerable location to 
plaque buildup. Figure also shows that the values of 
WSS in upper line are relatively higher along the 
aortic arch as compared to the other locations, which 
also makes the region more susceptible to plaque 
formation.  
More information about the circumferential 
variations of WSS can be obtained from Figs. 6(a-c). 
In these figures the variations of WSS along the 
artery perimeter at three cross sections, B, C and D, 
inside the arch are plotted. For each cross section 
four important positions of the inlet velocity 
waveform,  as shown in Fig. 2, are considered.  Note 
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Fig. 5. Variations of WSS along the inner, outer, 
and upper lines at the maximum velocity point 

(II).  
 
that 0=θ is located at the outer wall as shown in   
Fig. 4a. Fig. 6a, indicates that the maximum value of 
WSS at the inlet arch section occurs at inner 
wall )180( o=θ  at the maximum inlet velocity 
waveform, point (II), However, the maximum value 
of WSS shifts towards the upper and lower walls 
through the aortic arch (Fig. 6b and 6c). Also, note 
that the flow contains a symmetric plane located at 

o180=θ (A-A' plane in Fig. 4a) as indicated by 
symmetric behavior of WSS variations in the 
azimuthal direction. 
Finally, the non-Newtonian behavior of the blood has 
been examined in Fig. 7. The rescaled Newtonian 
model has been compared with a Newtonian model at 
constant viscosity of 0.0035 Pas. Figure shows the 
axial velocity profiles, Vn, in the symmetric plane    
A-A' at cross section C, located in the middle of 
aorta. The comparison has been made for the 
maximum deceleration of inlet velocity waveform, 
point (III) in Fig. 2, corresponding to the lower shear 
rates, where the non-Newtonian behavior becomes 
more important. Figure shows that the velocity 
gradients at walls and the amount of reverse flow in 
Newtonian model are higher than rescaled Newtonian 
model. 
Furthermore, the time averaged WSS during a cycle 
of inlet velocity waveform has been compared in 
Figs. 8a and b, for Newtonian and rescaled-
Newtonian models, respectively. Comparing Fig 8a 
with 8b indicates that the two models predict almost 
similarly the regions of high risk, where WSS is 
either high or low. However, the Newtonian model 
predicts higher values for the maximum of time 
average of WSS than the rescale Newtonian model. 
Since, properly locating the vulnerable sites is of 
great practical importance developing of the reliable 
models for non-Newtonian behavior of blood 

becomes an issue. According to Figs. 8, the regions 
of high and low values of WSS are located around 
the inlet and outlet of the aortic arch at the inner and 
outer  walls.  Note   that   high   values   of   the   time  
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Figs. 6(a-c). Variations of WSS along the artery 

perimeter  at four cycle positions and different cross 
sections: (a) cross section B, (b) cross section C, (c) 

cross section D.  
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Fig. 7. Comparison of axial velocity in the symmetry 
plane (A-A') at section C for Newtonian and rescaled 

Newtonian model at the maximum deceleration of 
inlet velocity waveform, point (III). 

 

 
 

 
Figs. 8(a-b). Time averaged WSS contours, (a) 

rescaled-Newtonian model, (b) Newtonian model 

averaged of WSS at the entrance region are due to 
stagnation of the flat inlet velocity profile at the 
artery walls.  

CONCLUSIONS 
The unsteady blood flow in an aortic artery is studied 
numerically. The computations are performed based 
on a slightly modified real geometry with a realistic 
inlet wave form. The convergence rate of the 
numerical method is enhanced through introducing 
two new pressure corrections. In order to predict the 
non-Newtonian blood behavior, a rescaled 
Newtonian model is employed. Comparing to the 
Newtonian model, significant differences in axial 
velocity profiles and WSS distributions are revealed. 
Present results indicate that vulnerable sites for 
genesis of atheroembolic disease are inner wall close 
to the inlet of the aorta arch. On the other hand, 
regions with low values of WSS along the inner and 
outer wall are most vulnerable to the initiation of 
atherosclerosis disease.  
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