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Abstract— The previously proposed first-order perturbation-

based algorithm and linear constrained least mean square (LMS) 

based algorithm for channel matrix singular value decomposition 

(SVD) in multiple - input multiple - output (MIMO) orthogonal 

frequency division multiplexing (OFDM) systems are evaluated 

and compared in this paper from orthogonality, signal to noise 

plus interference ratio (SINR) and bit error rate (BER) view 

points. Due to approximations made in the perturbation-based 

algorithm to reduce its complexity, studies show that the 

estimates of the right and left singular matrices do not become 

unitary in this algorithm. This phenomenon causes more spatial 

interference and therefore the perturbation-based algorithm has 

less performance in comparison with the LMS-based algorithm 

at high SNRs. 

Keywords- first-order perturbation-based algorithm; linear 

constrained LMS-based algorithm; MIMO; OFDM; SVD. 

I.  INTRODUCTION 

Employing spatial diversity both in transmitter and 
receiver sides is a promising technique that increases 
bandwidth efficiency and link  reliability in multiple- input 
multiple-output (MIMO) systems. However, intersymbol 
interference (ISI) and co-channel interference (CCI) are main 
challenging issues for exploiting the full capacity of MIMO 
systems. 

Singular value decomposition (SVD) is a technique that is 
able to mitigate co-channel interference by decomposing a 
MIMO channel into parallel and independent single-input 
single-output (SISO) subchannels [1]. In addition, SVD 
technique provides power allocation capability that leads to 
full capacity utilization of  the MIMO systems [2,3]. 
Orthogonal frequency division multiplexing (OFDM) is a 
pledging scheme for mitigating the ISI caused by frequency 
selective fading channels. Therefore, channel matrix SVD 
technique in company with the OFDM scheme usage would be 
able to overcome the previously mentioned main challenges in 
MIMO systems.  

In this paper we evaluate and compare the performances of 
two SVD estimation algorithms proposed in [4] and [5] based 
on computational complexity, bit error rate (BER) and signal 
to noise plus interference (SINR) view points. In [4] an 
efficient adaptive algorithm is proposed in which, due to 

approximations made, computational complexity is reduced in 
comparison with the proposed algorithm in [5], however, this 
leads to deviation form unitary property of singular matrices. 
The proposed algorithm in [5] on the other hand, is based on 
least mean square (LMS) method with linear constraints, but it 
does preserve the unitary property for singular matrices. 

This paper is organized as follows. After the introduction, 
channel model of MIMO-OFDM systems based on SVD is 
introduced in section II. In section III, adaptive algorithm 
based on first-order perturbation is described. Adaptive 
algorithm based on constrained LMS is reviewed in section 
IV. Simulation and comparison results are given in section V, 
followed by conclusions in section VI. 

II. CHANNEL MODEL IN MIMO-OFDM SYSTEMS  

A discrete model of a MIMO-OFDM system with N 
transmitting antennas, M receiving antennas and L subcarriers 

is shown in Fig. 1. Define 
( 1 ) ( L )

( k ) ( k ),..., ( k ) =  S s s  as a 

transmitted OFDM symbol matrix where 
T

( l ) ( l ) ( l )

1 N( k ) s ( k ),...,s ( k ) =  s is a symbol vector transmitted 

from the lth subcarrier. Note that (.)
T
 represents the transpose 

operation. When 
1

T
( ) ( L )

,..., =  H H H is an L-point fast 

Fourier transform (FFT) of the M×N channel impulse 

response matrix, ( )H k , after removing the cyclic prefix, the 

M×1 received vector  of the lth subcarrier , ( l )
( k )x , becomes 

where ( )lH is an M×N channel matrix of the lth subcarrier and 
( ) ( )l

kn  is an M×1 vector of the complex additive white 

Gaussian noise with zero-mean and autocorrelation matrix 
2( )   ( )n n MR k I kσ δ= , while IM is the M×M identity matrix. 

The SVD of the lth subcarrier channel matrix, ( )lH , can be 
given as 

( l ) ( l ) ( l ) ( l )
( k ) ( k ) ( k )= + x H s n  (1) 

(l) (l) (l) (l)H=H U  Σ  V  (2) 

      where  (l)U   and  (l)V   are  M×P  and  N×P  unitary  matrices, 
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respectively. Note that (.)
H
 denotes transposed complex 

conjugate and P is the rank of ( )lH  where P ≤ min(M,N). 

1

(l) ( l ) ( l )

P
diag( ,..., )σ σ=Σ is a diagonal matrix containing the 

singular values of the lth subcarrier channel matrix, where 

1 2 0( l ) ( l ) ( l )

P
...σ σ σ≥ ≥ ≥ ≥ . Due to unitary property of two 

singular matrices, (l)U  and (l)V , estimation of the subcarrier 

channel SVD at the receiver side based on minimizing the 
mean square error criterion is a complicated procedure 

because of nonlinear constraints 
H

( l ) (l)

P
=U U I  

,
H

( l ) (l)

P
=V V I . Obtaining the singular matrices, precoding 

(transmitter beamforming) in transmitter side and Equalization 
(receiver beamforming) in receiver side can be worked out by 

multiplying (l)V to the data vector  and  (l)HU to the received 

vector, respectively. In this case, the frequency selective 
fading MIMO channel is converted to L parallel and 
independent flat fading subchannels with channel gains equal 
to the corresponding singular values. 

III. FIRST-ORDER-PERTURBATION-BASED ALGORITHM 

Reconsidering (1) for an arbitrary subchannel at sample k, 
we have 

where H

k k k k=H U  Σ  V and , ,
k k k

x s n are kth sample of 

received, transmitted and noise vector, respectively.  Note that 
without loss of generality and due to simplicity, we drop the 
superscript of (l) in the following sections. Left and right 

estimated singular matrices have the form 1k k , k ,P,..., =  U u u  

and 1k k , k ,P,..., =  V v v . The true matrix 
k

H  in (3) varies with 

time such that the change from sample k to (k+1) is small. 

Following [4], the update equation for the estimate of 
k

H  can 

be modeled as 

where 0 1α≤ ≤  is the weighting factor defining the 

exponential decay rate of the observation window, and k is the 
time index at which the input and output vectors are known. 
From (4), we can get 

where the perturbation matrix is ( )( )1
1 H

k k k
α −= − − �E x s H . 

The estimated singular vectors at time index k may be 
described in terms of small perturbations of those at  k-1, i.e., 
[4] 

where I is the identity matrix. The overbar is used to indicate 
that the singular vectors are unnormalized. The diagonal 

elements of A and B are 0
ii ii

a b= = , and their (i,j)th elements 

are 
1

H

ij k ,i k , j
a −= � �u u  and 

1

H

ij k ,i k , j
b −= � �v v . It can be readily shown 

that, for i<j, 

( )
( )

1 1

2 2

1 1

*

k ,i ji k , j ij

ji

k ,i k , j

f f
a

ω ω

ω ω

− −

− −

+
=

−
 

 

(7) 

( )
( )

1 1

2 2

1 1

*

k ,i ij k , j ji

ji

k ,i k , j

f f
b

ω ω

ω ω

− −

− −

+
=

−
 

 

(8) 

where 
ij

f  is the (i,j)th element of the F matrix, and 

 , 
* *

ji ij ji ij
a a b b= − = −  for i>j. Also from [4] 

The singular value 
k ,i

γ must be real but estimation errors 

and noise mean that the second term in (9) may have an 
imaginary component, reflecting the phase offset of the ith 
singular mode. This offset can be applied to either the left or 
right singular vector, hence the update is given by [4] 

k ,i k ,iω γ=  (10) 

  or  
k ,i k ,i k ,i k ,i k ,i k ,i

γ γ← ←u u v v  (11) 

The adaptive SVD algorithm can be efficiently obtained by 
doing some manipulations and finally getting [4] 

  
Figure 1.    A discrete MIMO-OFDM system with N transmitting antennas and M receiving antennas 

k k k k
= + x H s n  (3) 

( )
1 2

1
H

k k k k

s

α
α

σ
−

−
= +� �H H x s  (4) 

1k k −= +� �H H E  (5) 

( ) ( ) , 
k k -1 k k -1

= + = +� �U U I A V V I B  (6) 

( )
1

1 1 1
     1

k ,i k ,i ii

H H

k ,i k ,i k k k ,i

fγ ω

αω α

−

− − −

= +

= + − � �u x s v
 (9) 
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1

1 1 1

1 11 1

* M i
j*i

k ,i k ,i j n , j i k , j

j i jk ,i k , j

yy
z z

ω ω

−

− − −
= + =− −

= + −∑ ∑� � �u u u u  

 

(12) 

1

1 1 1

1 11 1

* N i
j*i

k ,i k ,i j k , j i k , j

j i jk ,i k , j

zz
y y

ω ω

−

− − −
= + =− −

= + −∑ ∑� � �v v v v  

 

(13) 

where yi and zi are the ith elements of 
1

1 H

k k
α −= − �y V s  and 

1
1 H

k k
α −= − �z U x , respectively. The series of vectors u

i
p and 

1

u

i+q  for 1,..., 1i M= − , and v

i
p  and 

1

v

i+q  for 1,..., 1i N= − can 

be defined to make the Eq. (12) and (13) recursive, 

with
0

1u

k
α= −p x , 

1
0u =q  and 

0
1v

k
α= −p s , 

1
0v =q . 

Finally the updated scaled singular vectors can be computed 
using [4] 

*

*

, 1,

1,

u ui

k i k i i i i

k i

y
z

ω
−

−

= + −�u u p q  

 

(14) 

1

1

*

v * vi

k ,i k ,i i i i

k ,i

z
y

ω
−

−

= + −�v v p q  

 

(15) 

After updating and phase correction, the scaled vectors 

,k i
u and 

k ,i
v should be normalized to give the singular vectors, 

,k i
u  and 

k ,i
v . 

IV. LINEAR CONSTRAINED LMS-BASED ALGORITHM 

A two-step recursive method is used in this algorithm to 
estimate the SVD of the channel matrix directly from the 
received signal. By dropping the superscript (l), (3) can be 
rewritten as 

we define 
1

W and  
2

W as [5] 

1
=W UΣ  (17) 

2
=W VΣ  (18) 

one can easily show that [5] 

1i i i i
σ= =w Hv u  (19) 

2

H H H

i i i i
σ= =w u H v  (20) 

where 
1i

w , 
2i

w , 
i

u and 
i

v are the ith columns of  
1

W , 
2

W , 

U and V , respectively. We assume that the training sequence 

is an independent and identically distributed (iid) signal such 

that  2E H

s Ns(k)s(k) Iσ  =  for all subcarriers. Note that 

E 0
H

s(k)n(j)  =   for all k and j. By assuming 2 1sσ = , one can 

show that 

In the first step, by receiving ( )kx  and assuming 
i

ˆ (k 1)−v  

is the estimated 
i

v  at time  k-1, the improved estimation of 

1i
w at time  k-1, 

1
ˆ

i (k 1)
+ −w , based on the estimation of  

1i
w  at 

time k-1 becomes 

where 
1
µ is a positive scalar step-size of the LMS algorithm. 

Due to the orthogonality property of the column vectors of 

1
W , the estimation of 

1i
w at time k, 

1
ˆ

i (k)w , should be obtained 

under the following constraint 

Defining [5] 

1 1
     

i i 1i
ˆ ˆ(k) (k 1) (k)  i 1,...,P

+= − + ∀ =w w ηηηη  
 

(24) 

1 11 1 1    i i
ˆ ˆ ˆ(k) (k),..., (k)  i 1,...,P−

 = ∀ = W w w  
 

(25) 

where 
1i

(k)ηηηη is a M×1 vector, 
1

ˆ
i (k) w  is obtained under the 

defined constraint (23) so that  H

1i 1i(k) (k)η ηη ηη ηη η  is minimized [6]. 

From (23) and (25), we have 

Using the Lagrange multiplier method and by doing some 

manipulations, one can show  that 
1i

w at time k can be 

estimated by [5]  

( )

( )( )

1

1 1 1 1 1

1 1 1          

H

i M i i i i

H

i 1 i i

ˆ ˆ ˆ ˆˆ (k) (k) (k) (k) (k)

ˆ ˆ ˆ(k 1) µ (k) (k) (k 1) (k 1)

− = − 
 

× − + − − −

w I W W W W

w x s v w

 

 

(27) 

Based on (19),  the estimation of 
i

u  at time k is given by 

( )
1

-
2

1 1 1

H

i i i i
ˆ ˆ ˆ ˆ(k) (k) (k) (k)=u w w w  

 

(28) 

Having 
i

ˆ (k)u  from (28), in the second step, 
2i

w  at time k 

can be estimated with similar procedure of estimating 
1i

w  and 

the improved estimation of 
2i

w  at time k-1, 
2i

ˆ (k 1)
+ −w  can be 

given by [5] 

where 
i

ˆ (k)u  is obtained from the first step, ( k )x  is the  

received signal at time k and 
2
µ  is a positive scalar step-size. 

Following the same procedure for 
2i

w , one can readily obtain 

the dual forms for Eq. (23) to (25), and finally get [5] 

( )

( )( )

2 2 2 2 2

2 2          

-1
H

i N i i i i

H

i 2 i i

ˆ ˆ ˆ ˆˆ (k) (k) (k) (k) (k)

ˆ ˆ ˆ(k 1) µ (k) (k) (k) - (k 1)

 = − 
 

× − + −

w I W W W W

w s x u w

 

 

(30) 

( k ) ( k ) ( k ) ( k )= + x H s n  (16) 

1 E     for 1H

i i(k) (k) i , , P = =  …w x s v  (21) 

( )1 1 1 1

H

i i 1 i i
ˆ ˆ ˆ ˆ(k 1) (k 1) µ (k) (k) (k 1) (k 1)

+ − = − − − −+w w x s v w  (22) 

1 1

H

j i
ˆ ˆ(k) (k) 0     j i= ∀ <w w  (23) 

1 1 0        H

i i
ˆ ˆ(k) (k) i 1,...P= ∀ =W w  (26) 

( )2 2 2

H

i i 2 i i
ˆ ˆ ˆ ˆ(k 1) (k 1) µ (k) (k) (k) (k 1)

+ − = − + − −w w s x u w  (29) 

     By using 
2i

ˆ (k) w from (30), 
i

σ and 
i

v  at time k are estimated by 
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( )
1

2
2 2  

H

i i i
ˆ ˆˆ (k) (k) (k)σ = w w  

(31) 

( )
1

-
2

2 2 2

H

i i i i
ˆ ˆ ˆ ˆ(k) (k) (k) (k) =v w w w  

(32) 

V. COMPUTER SIMULATIONS 

A MIMO-OFDM system with L=64 for different N and M 
is considered in the simulations when the channel impulse 
response, H(k), has an exponential delay spread profile with 
duration of  LC =16 that is equal to the cyclic prefix interval.  
The elements of  the  H(k) are mutually independent complex 
Gaussian random variables with zero-mean. For each 

subcarrier, random symbols of BPSK, QPSK, 16QAM and 
64QAM with uniform distribution are being used. In each 
simulation, one hundred independent channel impulse 
response matrices are generated for performance evaluation of 
each algorithm. Using the estimated precodig and equalization 
(right and left singular) matrices and due to unitary property of 
them, we have 

where Σ̂ΣΣΣ must be a diagonal matrix with elements equal to the 
singular values of the channel matrix. But due to inaccuracy of 

estimations, off-diagonal elements of Σ̂ΣΣΣ  are not exactly zero. 

To evaluate the diagonal property of Σ̂ΣΣΣ , we define SINR as  

where 
n

P is noise power, 
2

1

P

s ii

i

ˆP σ
=

=∑ is signal power, and 

2

1 1

P P

I ij

i j , j i

ˆP σ
= = ≠

=∑ ∑  represents the interference power caused by 

inaccuracy. As seen in Fig. 2, by increasing SNR, the 
interference is also increasing and make the curves saturate 
after SNR=30 dB. In Fig. 3 the spatial interference in 
perturbation-based algorithm is considered as the ratio of sum 

of the energies of the main diagonal elements of H� �U U , to 

sum of the energies of the off-diagonal elements. In LMS-
based algorithm, due to preservation of unitary property, this 
ratio is infinite, so it has not been depicted, however for 
perturbation-based algorithm the curve saturates after SNR = 

30 dB. For both algorithms, the BER versus SNR for BPSK 
and QPSK  and also 16QAM and 64QAM modulation schemes 
are depicted in Fig. 4 and Fig. 5, respectively. As seen in these 
figures, the LMS-based algorithm outperforms the 
perturbation-based algorithm at high SNRs, specially for high 
constellation-point modulation schemes. However, in low 
SNRs two algorithms perform similar to the true case of 
knowing the MIMO communication channel. Also, as the 
number of constellation points increases, the BER of two 
algorithms deviate from ideal state (knowing the channel 
matrix) which represents the higher sensibility of 16QAM and 
64QAM modulation schemes to the estimation errors.  
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Figure 2.    SINR versus SNR for M=N=4. 
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Figure 3.    Deviation from orthonormality for  M=N=2 and M=N=4 for 

perturbation-based algorithm. 
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Figure 4.    BER versus SNR for BPSK and QPSK modulations with M=N=4. 

Hˆ ˆ ˆ=U HV ΣΣΣΣ  (33) 

s

I n

P
SINR

P P
=

+
 (34) 
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Figure 5.    BER versus SNR for 16QAM and 64QAM modulations with  

M=N=4. 

 

VI. CONCLUSION 

In this paper the performances of two adaptive SVD 
estimation algorithms for MIMO-OFDM systems have been 
evaluated and also compared. Simulation results show that in 
the perturbation-based algorithm, singular matrices deviate 
from unitary property which leads to less  performance at high 
SNRs, in comparison with LMS-based algorithm. Meanwhile, 
although both algorithms have the same convergence rate, due 
to making some approximations, the computational 
complexity of perturbation-based algorithm is lower than that 
o 

of the LMS - based algorithm. Also, these approximations 
cause the perturbation-based algorithm to have less SINR in 
comparison with LMS-based algorithm at high SNRs. The 
difference in BER performances of two algorithms is not 
significant in BPSK and QPSK modulation schemes, but the 
perturbation-based algorithm shows higher BER (less 
performance) at high SNRs for 16QAM and 64QAM 
modulation schemes. 
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