

Imavdoats, - eflymes

هيئت داوران(بخش شيمى)

دبير مقالات : مهندس مسعود رامبرى سى سخت
هيات علمى دانشكاه اصفهان
هيات علمى دانستكاه آزاد تهران جـوانو
عصو هيأت علمى دانشكاه نـيرار
استـاد دانـغكاد

هيات علدى دانـتاد مازندران هبات علمى دانشكاه اراك

 هيات علمى دانتچاه رأى كرمانتـاه

هبات علمى دانشـثاه باسور معاون بزوهــى , هبات علمى داتشكاه اصفهان ربيس داتشكده ميندسى شيهى و نغت شريف

عضو هيأت علمى دانشڭكاه اصفهان هيات علمى دانشُكاه رأى كرمانتشاه هبات علمى دانـتكاه اصفهان ران

هبات علمى دانشُّاه خليج هارس - بوتشه
هبات علمى دانتكاه تـهـيد باهنر كرمان هيات علمى داششكاه ازاد واحد علوم و نحقيفـات

هيات علمى دانشكاه علم و صنعت ايران انـ هيات علمى دانشعاد خواحه سصيرالدبن توسى
هبات علمى دانــكاه مازدران

هيات علمى دانتُعاه شُـبـد باهـر كرمان
عضـو هيأت علمى دانشـكاه علم و صـعت ايرانـ

هيات علمى دانــكاه مار دبران

هبات علمى دانـُكاه باسوع

عيات علمى دانـعاه هازندران
هبات علمى دانشتكاه مازمدران

هيات علمى داشتكاه اصفـان
هيات علمى دانشـاه هـينان

هيات علدى داتشكاه صنعنى شُر بف

دكتر رواد أقاميرى
 دكـرفر يدون استماعيل زاده اده دكتر ـبـد غلامر صـا اعتماد

دكتر على الباسىى
دكترمحبد نفى زاده
دكتر عر ان اله حود
دكنر على حقيفى اصلـ
دكـر بهنام خونش اندام
دكـر مسبود رخـمى
دكتر محصود ,ضا ر ريمى

دكتّ امير رحبهى
دكتر داود رشتـتجيان

> دكتر ماراب ربيسى

دكـرع علير فا سـلبمانى نظر

دكـتر محمد رضا طلايى

> دكتر محمد عابدى

دكتر تُهـريار عصفورى
دكمر سبد احمد عطابيى
دكنر ابوالحسن علوى

دكتر بـيد محمد علوى الملنى
دكنر محِبد عميد بور

دكتر حسين عـبـى زاده
دكتر محمد حسن فصانلى بور

دكترفرزرانه فبضى
مهيّدس عباس قبادى
دكتر على اصغر قرينـي

دكتر مهدى كاظهم بور
دكتر هجبر كريمى
دك دكر محمد تادر لطف اللهى
دك دكر هحمد هوسوى
دكـر كاميار موفر نزاد
دكتر قالسم نجف بور

دكتر امير حسـين بوارجـان
دكتر فرامرز هرمزى
دكمر فرتـاد ورامينبال
دكـر سهيلا غنمايى

سيستم خطوط لوله حلقوى جهت افزايش ظرفيت انتقال كاز طبيعى

محمد على فنايى شيخ الاسلامى ـ مهدى نيكنام شاهر مي

دانشكاه فردوسى مشهد - دانشكده مهندسى - كروه مهندسى شيمىي

حكيده :

 ...

 ترديده است.
كليد وازه ها:

خطوط لوله انتقال گاز، خطوط لوله موازى، بهينه سازى

-

يكى از مهمتر ين مشكلات شر كت هاى عمليات انتقال كاز، افزايش دبى عبورى و به تبع آن افزايش افت
 احداث خطوط لوله جديد، افزايش تعداد و ظرفيت ايستگاهرهاى تقويت فشار و همحچحنين تقويـت خطـوـو لوله قديمى توسط خطوط لوله موازى از روش هاى مرسوم مورد استـفاده جهت رفـع مـشـكل فــوق مـى باشد[1]
مهندسين گاز معمولا جهت طراحى خطوط لوله جديد و يا تقويت خطـوط لولـه قـديمىى، در محاســبات دستى از معادلات ساده ای مانند Panhandle , Weymouth [1
 [0] HYSYS

 عبارتند از:

$$
\begin{equation*}
\frac{\partial \rho}{\partial t}+\frac{\partial(\rho u)}{\partial x}=0 \tag{1}
\end{equation*}
$$

$\frac{\partial(\rho u)}{\partial t}+\frac{\partial\left(\rho u^{2}+P\right)}{\partial x}=-\rho g \sin \theta-2 \frac{f \rho u|u|}{D}$
$q \rho A \mathrm{~d} x=\frac{\partial}{\partial t}\left[(\rho A \mathrm{~d} x)\left(C_{1} T+\frac{u^{2}}{2}+g z\right)\right]+\frac{\partial}{\partial x}\left[(\rho A u \mathrm{~d} x)\left(C_{1} T+\frac{u^{2}}{2}+g z+\frac{P}{\rho}\right)\right]$

در معادلات فوق دانسيته گاز را مى توان با استفاده از قانون گازهاى واقعى بصورت زير محاسبه نمود:
(f)

$$
P=\rho Z R T
$$

روش هاى عددى مختلفى جهت حل معادلات فوق توسط محققين مورد اسـتـفاده قــرار گرفتـهـ
 و [1](Method of Characteristics) MOC implicit Finite Diffrence
ج) روش MOL
(اشاره نمود. در روش MOL معـادلات ديفرانـسيل پـاره الى مربـوط بـه موازنه جرم، ممنتوم و انرثى به كمكى روش تفاضل محــدود در بعـد مكــان گسـسته مـى شـود. ســـس

دستگًاه معادلات ديفرانسيل معمولى حاصله در بعـد زمـان بـه كمـكـ روش هـاى عـددى ماننــد اولـر و رانج-كاتا حل مى شوند. در نرم افزار HYSYS جهت شبيه سازى خطوط لولـه انتقـال گـاز در حالـت ناپايا از روش MOL و در حالت پايِا از روش تفاضل محدود استفاده شده است [هـ]. تقويت خطوط لوله انتقال گاز توسط خطوط لوله موازى كه اصطلاحاً به سيستم لوب معروف است، اولين بار توسط كمبل مورد مطالعه قرار گرفت. نتايج اين مطالعـات در اكثـر كتـاب هـایى درسـى مربـوط بـهـ
 موازى، از فرضيات خط لوله افقّى، جريان همدما، پايا و ثابت بودن ضريب تراكم چذيرى گاز استفاده شده
 دار نيز استفاده نمود. در ادامه اين مقاله، ابتدا در محيط نرم افزار HYSYS، روشى جهت شبيه سازى خطوط لوله انتقال گاز
 دقت معادله كمبل با نتايج حاصله از نرم افزار HYSYS مورد مقايسه قرار گرفته است. در بخش بعدى مقاله سس ا; ارائه نحوه تعميهم رابطه كمبل براى خطوط لوله شيب دار، ميـزالن خطـاى رابطـه كمبـل در صورت افزايش شيب خط لوله، از طر يق مقايسه نتايج مربوط به دو رابطه (كمبل و كمبل تعميمه يافتـه) تعيين گرديده است. نهايتأ روشى جهت تعيين طول و قطر بهينه خطوط لوله موازى در صورت اسـتفاده از معادله كمبل و يا معادله تعميم يافته كمبل ارائه شده است.
: HYSYS r- روش پيشنهادى جهت شبيه سازى سيستم لوپ به كمك نرم افزار نمونه ایى از يك سيستم لوپ در شكل ا نشان داده شده است. در سيستمه لوپ، طول خط لولـه مـوازى (B) بگونه ای تعيين مى تردد تا على رغهم افزايش دبى عبورى از شبكه، مقدار افت فشار در خـط لولـه اصلى (A+C) تغييرى نكند. البته اين نكته لازم به ذكر است كه طول و قطر خط لوله مـوازى بـه هـم وابسته بوده و يا بعبارت ديگر يكى متنغير مـستقل (طـول يــا قطـر) بـه عنـوان بـارامتر طراحـى موجـود
 توجه به شر ايط ذكر شده در بالا (تغيير نـنمودن مقدار افت فشار در خط لولـه علـى رغــم افـزايش دبـى عبورى) تعيين مى گردد. با توجه به توضيحات فـوق روش زيـر جهــت شــبيه سـازى سيـستم لـوپ، در صورت معلوم بودن قطر خط لوله موازى، در محيط نرم افزار HYSYS پيشنهاد گرديده است:

شكل ا: نمايى از خط لوله B كه با خط لوله A لوب شده است.

- ابتدا خط لوله اصلى انتقال كاز را بدون افزايش دبى (Q \quad (\quad)، شبيه سازى كنيد. بدبن منظور
 لازم است كه خط لوله اصلى توسط دو قطعه لوله مجزا ((C , A) شبيه سازى شود.

 خط لوله C را برابر با كل طول خط لوله اصلى منهاى طول خط لوله A قرار دهيد. حال دبـى وروودى را

$$
\text { بر روى مقدار جديد قرار دهيد(}\left(Q=Q_{\text {new }}\right. \text {. }
$$

- موجود در نرم افزار، نحوه تقسيم دبى مابين دو خط لوله Adjust و A ا ر ا با بَ كونه

الى تعيين كنيد تا فشار دو خط لوله مذكور در محل اتصال با هم برابر بر باش باشد.

شكل r: نمودار شبيه سازى شده از يك سيستم لوب.
r
كمبل اولين كسى بود كه رابطه ای را جهت تعيين طول خطوط لوله موازى در سيستم لوت ارائه نمـود. در اين رابطه كه بنام وى معروف است، فرضياتى نظير خط لوله افقى، جريان همدما، پايـا و ثابـت بـودن ضeymouth ضريب تراكم پذيرى گاز بكار گرفته شده است. معادله كمبل در صورت استفاده از رابطه جهت تعيين ضريب اصطكاك بصورت زير مى باشد [1]]:

$$
\begin{equation*}
x_{f}=\frac{1-\left(\frac{Q_{\text {new }}}{Q_{\text {old }}}\right)^{2}}{1-\frac{1}{\left[1+\left(\frac{D_{B}}{D_{A}}\right)^{8 / 3}\right]^{2}}} \tag{b}
\end{equation*}
$$

در رابطه فوق گردد و بصورت زير تعريف مى شود:
$x_{f}=\frac{L_{A}}{L_{A}+L_{C}}$
در ادامه دقت رابطه كمبل در تعيين طول خط لوله موازى با نتايج حاصـله از نــرم افـزار Hysys مــورد مقايسه قرار گرفته است. علت استفاده از نرم افزار Hysys عدم اسـتفاده از فرضــيات جريـان همـدما و

 ميليون متر مكعب در روز، از يك خط لوله موازى، با قطر داخلى FT اينج استفاده گرديد. طول خط لوله

 با نرم افزار Hysys حدود خط لوله قابل صرفنظر كردن باشد، براى محاسبات مربوط به خطوط لوپ مى تـوان از رابطـه كمبـل بـا دقت قابل قبولى استفاده نمود.

جدول ا: تركيب درصد مولى گاز ورودى به خط لوله

ايزوينتان	نرمال بوتان	ايزوبوتان	يروهان	اتان	متان
- /小	- /r	- /rf	1/1^	rinf	ANT
	كاز كربنيك	نيتروثن	هيتان و سنگين ت	هكُّان	نرمال بنـتان
	.1.4	$\Delta / \Delta \Lambda$	$\cdot / 19$.1.9	. 1.9

FF F تعميه رابطه كمبل جهت استفاده در خطوط لوله شيب دار :

 متقاوت مورد مقايسه قرار گرفته است

$P_{1}^{2}=e^{S} P_{n+1}^{2}+\left(\frac{16 \rho_{s c}^{2} Q^{2} Z_{a v} T_{u v} R f}{\pi^{2} g_{c} D^{5} M}\right) L_{e}$
جائيكه
$L_{e}=\sum_{i=1}^{n} L_{i} \frac{\left(e^{S_{i}}-1\right) e^{\sum_{i=1}^{i-1} S_{j}}}{S_{i}}$

$$
\begin{equation*}
S_{i}=\frac{2 M g z_{i}}{g_{c} Z_{o v} T_{a} R} \tag{9}
\end{equation*}
$$

$$
S=\sum_{i=1}^{n} S_{i}
$$

شكل r : شبكه خطوط لوله شيب دار.
مى توان نشان داد كه براى خطوط لوله شيب دار همان رابطه كمبل قابل استفاده بوده با اين تفاوت كـه معادله مذكور بجاى X X X مى نمايد (xfe). بنابر اين داريم:

$$
\begin{equation*}
x_{f_{c}}=\frac{L_{A_{c}}}{L_{A_{c}}+L_{C_{c}}}=\frac{1-\left(\frac{Q_{\text {nev }}}{Q_{\text {old }}}\right)^{2}}{1-\frac{1}{\left[1+\left(\frac{D_{B}}{D_{A}}\right)^{8 / 3}\right]^{2}}} \tag{11}
\end{equation*}
$$

پس از استفاده از معادله فوق و تعيين طول معادل مورد نياز براى خط لوله مـوازی، بكمـك معادلـه 1 و بصورت سعى و خطا مى توان طول واقعى خط لوله موازى را تعيين نمود.

سلسيوس و جرم ملكولى گاز برابر با \& \& أـ منظور ترديد.

 باشد. بنابراين در اين حالت مى توان از تغييرات ارتفـاع خــط لولـه در محاسـبـات خطـوط لولـه مـوازى
(سيسته لوپ) صرف نظر نمود. ولى براى خطوط شيب دار با زاويه بيش از 「 درجه ميزان خطاى حاصله
 حالت استفاده از رابطه تعميهم يافته كمبل توصيه مى گردد.

شكل f: نمودار خط لوله شيب دار.

جدول r: نتايج حاصل در محاسبات مربوط به بك سيسته لوب شيب دار در زاويه هاى مختلف.

ميزان خطا در مقايسه با حالت افقى (درصد)	طول خط لوله موازى بر حسب كيلومتر	زاويه (درجه)
---	F9/V	.
1/DF	FV/ar	- /rs
$r / . r$	FNMgT	-16
$\Delta / 9$	fa/grer	1
11/1T	$\Delta T / \Delta F$.	T
10/V	$\Delta \Delta / f \cdot r$	r
ru/r	c. Are	0
ros	VI/ $\ 0.9$	1.
F4/19	Nr/grr	r.
fy/ur	MAIGAT	r.
Fq/ $/ \mathrm{V}$	9×1099	0 .

ه - مقا يسه عملكرد رابطه كمبل و كمبل تعميم يافته در يك شبكه انتقال كاز : همان طور كه در بخش قبل نيز عنوان گرديد براى محاسبات سيستم لوب در خطوط لوله شـيب دار بـا شيب بيش از Y در جه لزوما بايد از معادله تعميمه يافته كمبل استفاده شود. در تكميـل ايـن مبحـث، در اين بخش عملكرد معادلات كمبل و كمبل تعميم يافته در محاسبات مربوط به سيستم لوت يك شــبكه
 بررسى قرار گرفته است. بدين منظور مسير مابين ايستگاه هاى هفتمه و هشتم تقويـت فـشار شـــبكه دوم انتقال گاز سراسرى ايران (حد فاصل شهر هاى قمر و تهران) بعنوان نمونه مطالعاتى انتخاب ترديد.

 هر قطعه لوله محاسبه شد. اين نكته لازم به ذكر است كـه در صـورت اسـتفاده از رابطـه تعمـيمر يافتـه
 جدول r نشان داده شده است. طول حاصله براى خط لوله موازی در صورت صوت استفاده از رابطـه كمبـل و و

 اين مسئله باعث گرديده است كه اثرات شيب بر روى محاسبات طول خط لولـه مـوازى، خنثـى گـردد.
 كمبل با توجه به سادگى و ححمر كمتر محاسبات بر معادله تعميمر يافته تر جيح داده مى شود. جدول r: مشخصصات شبكه انتقال در نظر ترفته شده

زأويه شيب نسبت به افق (درجهد)	دماى متوسط (سلسيوس)	تغيير ارتفاع (متر)	طول (كيلومتر)	شُماره قطعه لوله
-./r9a	Fo	-rıs	$\Delta 9$	1
-./far	ff/l	- - .	g/r	r
--19	fr/fo	-r.	9	r
-/rra	fr/rs	v.	$19 / 1 \mathrm{~A}$	F
- MFr	FI/T	8)	$1 \cdot / r$	Δ
M/MIF	F./FD	r11	$9 / 5$	¢

¢- روش پيشنههادى جهت تعيين طول و قطر بهينه خط لوله موازى درسيستم لوپ :

 طول آن نيز با توجه به روابط (ه) و (11) تغيير خواهد نمود. در اين بخـش روشـى بـراى تعيـيـن قطـر

 بك اينج را مى توان بصورت زير نمايش داد[9] $C_{B}=C_{P}\left(\frac{D_{B}}{0.0254}\right)^{1.5} L_{A}$

در رابطه فوق CP نشان دهنده قيمت خريد و نصب خط لوله اى فولادي به قطر يك اينج و طـول يـى

 بصورت عددى و يا ترسيمى انجام ثذيرد.
 ترسيمى مورد استفاده قرار گرفت. نتايج حاصله در شكل ه نشان داده شده است. همانگًونه كه مـشاهده مى تردد، براى شبكه مذكور خط لوله موازى داراى قطر بهينه با توجه به معادله I 1 حدود K•/ V كيلومتر است.

شكل ه : نحوه تغييرات هزينه بر حسب قطر خط لوله موازى در سيستم لوب.
V- نتيجه گيرى :

در اين مقاله محاسبات مربوط به شبكه هاى خطوط انتقال كاز در مواقع افزايش دبى عبورى بكمك
 قبولى در تعيين طول خط لوله موازى در شبكه هاى افقى برخوردار است. ثانيأ در شبكه هاى دار دار داى
 كمتر از 11 درصد مى باشد. همحنين در اين مقاله معادله كمبل به كونه ایى تعميهم يافت تا از آن بتو بـوان در خطوط لوله شيب دار با شيب بيش از r ب در جه نيز استفاده نمود. در انتهاى مقاله نيز روش نسبتاً

 گَاز استفاده نمود. .". فهرست علائمر : θ (kg/mr) د ρ
u : سرعت گاز (m/s)
(Pa) : فشار :
g : شتاب جاذبه ((m) f : ضريب اصطكاك

D :
q : نرخ انرزى دريافتى توسط كاز بر واحد جرم (W/kg)
(m^{r})
(J/kg K) ظرفيت حرارتى یاز در حجم ثابت :
z: تغيير ارتفاع خط لوله (m)
t : زمان (S
Z : ضر يب تراكم بذيرى یاز
زير نويس ها :
شرايط استاندارد : S.C
a.v : مقدار متوسط
i : قطعه لوله i ام

مراجع :

1. Sanjay Kumar, "Gas Production Engineering", Gulf Publishing Company, (1987).
2. Mohitpour, M., Golshan, H., Murray, A. "Pipeline Design and Construction ", $2^{\text {th }}$ Edition, American Society of Mechanical Engineers, (2003).
3. " Pipe Phase Manual Version 8.1 ", SIMSCI Company, (2002).
4. " Pipesys User Guide ", Aspen Technology, (2002).
5. "Hysys Operations Guide Version 3.1", Aspen Technology, (2002).
6. Osiadacz, A. J., Chaczykowski, M. "Comparison of isothermal and nonisothermal pipeline gas flow models", Chemical Engineering Journal, 81, 41-51 (2001).
7. Tentis, E., Margaris, D., Papanikao, D., "Transient gas flow simulation using an adaptive method of line", C. R. Mecanique, 331, 481-487 (2003).
8. Campbell, J. M., "Gas Conditioning and Processing", Vol 1, Campbell Petrolum Series, Oklahoma, (1976).
9. Peters, M. S., Timmerhaus K. D., West, R. E., "Plant Design and Economics for Chemical Engineers", McGraw-Hill, $5^{\text {th }}$ Edition, (2003).

$$
\begin{aligned}
& \text { R : ثابت جهانى گازها (J/kmol K } \\
& \text { Q : دبى عبورى از خط لوله در شرايط استاندارد (MMSCMD) } \\
& \text { (m) طول خط لوله :L } \\
& \text { : } \\
& \text { M } \\
& \text { C } C_{B} \\
& \text { CP }
\end{aligned}
$$

