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ABSTRACT 
 

This paper considers a two-level supply chain consisting of one warehouse and one retailer. Unlike the most similar 
models which determine the optimal ordering policy according to inventory cost only, in this model, we also consider 
the transportation cost. We assume that the demand rate at the retailer is known and the demand is confined to a single 
item. Shortages are allowed neither at the retailer nor at the warehouse. The objective is to find the economic order 
quantities for both the retailer and the warehouse which minimize the total cost. That is, the sum of the holding and 
ordering cost at the retailer and warehouse as well as the transportation cost from warehouse to retailer. Numerical 
results show savings can be made by this model in comparison to the model of optimal ordering policy in which the 
transportation cost is not considered. 
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1- INTRODUCTION 
 

The goal of many research efforts related to the supply 
chain management is to present models to reduce 
operational costs. Inventory holding cost and the 
transportation cost are regarded as the most important 
operational costs in a supply chain. There are many 
research undertakings in supply chain that consider the 
transportation cost as a part of the ordering cost and 
thus assume that it is independent of the size of the 
shipment. Axsäter [1,2], Forsberg [3,4], Matta and 
Sinha[5], and Seifbarghi and Akbari [6] investigate 
different models in a two-level inventory system. 
These models include a central warehouse and a 
number of retailers. In these models, the total cost 
consists of holding cost at the warehouse and at the 
retailers as well as the shortage cost at the retailers. 
Silver et al. [7] investigate a supply chain consisting of 
one warehouse and one retailer with external demand 
rate known with certainty. In this model, the total cost 
consists of fixed replenishment costs of warehouse and 
the retailer as well as the holding costs of warehouse 
and retailer.⋅
 
In practical cases, transportation cost is affected by the 
shipment size and vice versa. So, it is important to 
determine the economic order quantity to minimize the 
overall logistics costs. Ghanshan [8] introduces a three-
level supply chain consisting of a number of identical 
retailers, one central warehouse, and a number of 
identical suppliers. In this model, the objective 
function consists of ordering, holding and 
transportation costs. This model considers the 
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transportation cost as a function of order quantity but 
ignores the capacity of vehicle. Ertogral et al. [9] 
consider a vendor-buyer supply chain model and 
incorporate the transportation cost. The transportation 
cost depends on shipment size. All-unit-discount 
transportation cost structures with and without over 
declaration have been considered in their work. Huang 
et al. [10] consider a two-level supply chain in which a 
warehouse delivers its products to many retailers. Each 
retailer faces a constant and deterministic demand. The 
objective is to determine an optimal stationary ZIO 
(Zero Inventory Ordering) policy for both warehouse 
and retailers in which the average transportation and 
inventory cost is minimized. Transportation cost 
consists of a fixed cost and a variable cost which is 
linearly proportional to the amount of quantity ordered. 
 

Warehouse 

In this paper we consider a two-level supply chain 
consisting of one warehouse and one retailer (Fig1).   
We assume that the retailer faces deterministic demand 
with a constant demand rate and the demand is 
confined to a single item. Shortage is allowed neither at 
the retailer nor at the warehouse. The transportation 
time for an order to arrive at a retailer from the 
warehouse is assumed to be constant. The warehouse 
orders to an external supplier. The lead time for an 
order to arrive at the warehouse is assumed to be 
constant. The objective is to find the economic order 
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Fig 1. A Two-Level Supply Chain 
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quantity (EOQ) for the retailer and the warehouse. 
Unlike the most similar models which determine EOQ 
just according to inventory costs, in this model, we 
consider the transportation cost as well. Thus, the total 
cost is the sum of holding and ordering costs at retailer 
and at warehouse plus the transportation cost from 
warehouse to retailer. 
 

2- TRANSPORTATION  SCHEME 
 

In this model, we suppose that there are three types of 
vehicle and delivery of each order from warehouse to 
retailer is made by a single vehicle without splitting. It 
is a common transportation scheme in most practical 
cases. We define these types as small (S), medium (M) 
and large (L). Each type has its own fixed cost, 
variable cost and the capacity size. Table 1 shows the 
context of transportation scheme. 
 

Table 1. Transportation Scheme 
Vehicle 

Type Capacity Fixed 
Cost Variable Cost 

S q1 F1 v1

M q2 F2 v2

L q3 F3 v3

 
It is assumed that F1<F2<F3 , v1>v2>v3,,  q1<q2<q3 , 
and  
F2=F1+q1(v1-v2), F3=F2+q2(v2-v3). These equations are 
supposed to avoid any over declaration. 
 
So, the transportation cost (TC) according to the order 
quantity varies as shown in Figure 2. 

 
3- FORMULATION OF THE TOTAL COST  

 

We suppose that the demand rate at the retailer and the 
transportation time to the retailer are constant. Shortage 
is not allowed at retailer, so, inventory level at retailer 
is a simple EOQ model and behaves as depicted in 
Figure 3. 
 
Qr: Batch size of the retailer, 
LTr: Lead Time (Transportation Time) from the 
warehouse to the retailer, 
 
It is assumed that there is no lot-splitting at the 
warehouse. On the other hand, shortage is not allowed 
at the warehouse so that the order quantity of the 
warehouse is an integer multiple (n) of the order 
quantity of the retailer. Changes in the inventory level 
at the warehouse are shown in Figure 4. 

Inventory 
Level 

 
Qw: Batch size of the warehouse, 
Tr: The time interval between any two consecutive 
orders of the retailer, 
Tw: The time interval between any two consecutive 
orders of the warehouse 
 
The total cost is the sum of holding and ordering costs 
at the retailer and at the warehouse plus the 
transportation cost from warehouse to the retailer. The 
objective is to find the economic order quantity (EOQ) 
for the retailer and for the warehouse in order to 
minimize the total cost: 
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D: Demand rate at the retailer, 
Ar: Ordering cost for the retailer, 
Aw: Ordering cost for the warehouse, 
hr: Rate of holding cost at the retailer, 
hw: Rate of holding cost at the warehouse, 
n: Integer multiple of the order quantity of  the retailer, 
q0 = 0, 
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Cost 
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Fig 2. Variation of Transportation Cost 
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Fig 3. Inventory Level at Retailer 
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Index i denotes the vehicle type; 1, 2 and 3 respectively 
for S, M and L. For shipment of retailer’s order, 
according to order quantity, one of these types must be 
chosen. So, the ordering-size is restricted by the 
vehicle capacity. 
 
We substitute nQr for Qw in (1). So, the objective 
function in terms of Qr, n is:  
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4- ALGORITHM TO FIND THE OPTIMAL 
SOLUTION 

 
Figure 5 shows graphically the total cost for a pre-
determined n. We analyze the properties of this piece-
wise convex function with respect to the order quantity 
of retailer. First, we present propositions 1,2 and 3 to 
show that for a pre-determined n the total cost function 
is a piece-wise convex function. 

 
Proposition 1: For a pre-determined n the total cost 
function, CTi, is convex, i=1, 2, 3. 
 
Proof: For i=1, the first interval of Qr, the total cost 
function is: 
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We have: 
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For i=2, 3 we can prove that CTi is convex. 
 
Proposition 2: For a pre-determined n, 
CT1(q1)=CT2(q1) and CT2(q2)=CT3(q2). 
 
Proof: CT1 at point q1 is as follow: 
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Based on the chosen transportation scheme we know 
that F2=F1+q1(v1-v2). By substituting F2 for F1 we 
obtain: 
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The left side of the above equation is CT2(q1). Similarly 
we can prove CT2(q2)=CT3(q2).  
Proposition 2 indicates that the total cost function is 
continuous.  
 
Proposition 3: For a pre-determined n, the slope of CT1 
at q1 is greater than the slope of CT2 at q1, also the slope 
of CT2 at q2 is greater than the slope of CT3 at q2. Total 

 Cost  
Proof. The derivative of CT1 minus the derivative of  
CT2 at q1 is: 
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According to the assumptions of the transportation 
scheme we know that F2>F1, which means the slope of 
CT1 at q1 is greater than the slope of CT2 at q1. 
Similarly, it can be shown that the slope of CT2 at q2 is 
greater than the slope of CT3 at q2. 

q1 q2 q3 Qr

 Fig 5. Total Cost for a Pre-determined n Proposition 3 indicates that the minimum of the total 
cost function cannot occur at the break points. 
 
According to propositions 1, 2 and 3, we can conclude 
that for a pre-determined n the optimal value of Qr can 
be obtained the same as an EOQ model with 
incremental quantity discounts, as described by Hadley 
and Whitin [11]. 
 
We develop a search algorithm based on the model 
presented by Ertogral et al. [9] to obtain the optimal 
value of n, and Q.  As mentioned above, we apply the 
EOQ model. Thus, we need a lower bound and an 
upper bound for n to create our search algorithm. 
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Set 1 as a lower bound for n. The following proposition 
generates the upper bound for n. 
 
Proposition 4: The upper bound of n is: 
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Proof: In the first interval of Qr, the total cost function 
is: 
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If we set the derivatives of CT1 with respect to Qr and n 
equal to zero we obtain 
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the value of n which optimizes CT1(n) is obtained as: 
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From Eq. (4) we can conclude that n and Qr have an 
inverse relation. The value of Qr obtained from Eq. (3) 
is a lower bound on Qr, because there is no gain to 
decrease Qr less than Q*

r. Hence, the n* in Eq. (5) 
would be an upper bound on n. 
In summary, the procedure to obtain the values of n and 
Qr is as follow: 
 
Algorithm: 
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2- For each n=1, 2,…,nup find the optimal value 
of Qr and the corresponding minimum total 
cost (CT). 

3- The solution which has the minimum total 
cost among the solutions in step 2 is the 
overall optimal solution. 

5- NUMERICAL RESULTS 
 
In this section we apply this model to a real case. We 
present a pharmaceutical downstream supply chain of a 
public hospital in which, the hospital pharmacy (H.P) 
is considered as retailer (because it delivers the 

pharmaceutical products to several care units). The 
hospital pharmacy orders these products to the central 
pharmacy (C.P), considered here as the warehouse that 
delivers to several hospitals [12]. We target a part of 
pharmaceutical products, ordered regularly with fixed 
quantities and at fixed periods. The objective is to 
minimize the total cost of system consisting of the sum 
of holding and ordering costs at the central pharmacy 
and at hospital pharmacy as well as the transportation 
cost. 
 
Tables 2 and 3 give the transportation data and four 
types of pharmacy product respectively. The capacity 
and variable costs of vehicles are according to volume. 
In order to apply our algorithm we need to transform 
these parameters (capacity and variable cost of 
vehicles) in unit of product. Table 4 presents the 
capacity and variable costs of vehicles in term of 
product unit. 

 
Table 2. Transportation Data 

Vehicle 
Type 

Capacity 
(m3) 

Fixed 
Cost 
(€) 

Variable 
Cost 

(€/m3) 
S 8 169 5 
M 14 179 3.75 
L 20 196 2.5 

 
Table 3. Data of Pharmacy Products 

Product 
No. 

Demand 
(unit/year) 

Price 
(€/unit) 

Volume 
(m3) 

1 19518 0.07 0.011 
2 15106 0.11 0.017 
3 1685 1.74 0.073 
4 1864 6.26 0.045 

 
Table 4.Transportation Data According 

 to Product Unit 

Product 
No. 

Vehicle 
Type 

Capacity 
(unit) 

Variable 
Cost 

(€/unit) 
S 727 0.06 
M 1273 0.04 1 
L 1818 0.03 
S 471 0.09 
M 824 0.06 2 
L 1176 0.04 
S 110 0.037 
M 192 0.27 3 
L 274 0.18 
S 178 0.23 
M 311 0.17 4 
L 444 0.11 

The ordering cost of hospital pharmacy (retailer) and 
central pharmacy (warehouse) are 1 and 3 respectively, 
thus, Ar=1 and Aw=3. The rate of holding cost per unit 
time at hospital pharmacy is 30% of the unit price and 
at central pharmacy is 20%. Table 5 contains the rate of 
holding cost. 
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Table 5. Rate of Holding Cost 
Product 

No. 
hr

(€/unit/year) 
hw

(€/unit/year) 
1 0.02 0.01 
2 0.03 0.02 
3 0.52 0.35 
4 1.88 1.25 

 
Table 6 illustrates the effect of transportation cost on 
the ordering-size. In these examples, we obtained EOQ 
for hospital pharmacy and for central pharmacy by two 
models. The results obtained from our model are 
denoted by In.Tr in Table 6, and the results obtained 
from the model which ignores the transportation cost 
are denoted by In in the same table. In the first model 
(In.Tr.) the transportation cost is integrated directly in 
the total cost. In the second model (In.), in calculating 
the EOQ, we ignore the transportation cost but in 
obtaining the total cost we must consider the sum of 
the inventory and the transportation costs. We 
compared the total costs of these models and found the 
savings obtained by our model. The results show that 

the transportation cost affects the ordering-size and the 
total cost. Note that the saving for product 2 is 0%, 
because EOQ of hospital pharmacy obtained by In. 
model is 2007 unit which is more than the capacity of 
large vehicle. Therefore, we have to restrict it to 1176 
unit which is the large vehicle capacity. Thus, the total 
cost, in this situation, is the same for both models.  
 
EOQ of hospital pharmacy which defines vehicle type, 
depends on many parameters such as the rate of 
holding cost, transportation cost etc. For product 1 we 
made sensitivity analysis on the rate of holding cost at 
retailer, on the fixed cost of small vehicle (S.V) and on 
the variable cost of large vehicle (L.V). Tables 7, 8, 
and 9 show the results of these analyses. These 
analyses show that whenever the rate of holding cost at 
hospital pharmacy increases, we should decrease the 
inventory level at the hospital pharmacy, i.e., decrease 
the order quantity. The results of Table 7 confirm this 
fact. According to the results shown in Tables 8 and 9, 
we can conclude that the economic order quantity is 
affected by transportation cost. 
 

 
Table 6. The Results for Four Pharmacy Products  

Product No. Model  E.O.Q of H.P (unit) E.O.Q of C.P (unit) Total Cost (€/year) Saving (%) 
In.Tr 1818 3636 2743.9 1 In 1804 3608 2760.7 0.6 

In.Tr 1176 2352 3183.4 2 In 1176 2352 3183.4 0 

In.Tr 274 274 3424.3 3 In 238 238 3820.5 10.4 

In.Tr 444 444 1462 4 In 89 89 4133.2 64.6 

Table 7. Results of Sensitivity Analysis  
on Rate of Holding Cost at H.P 

hr
(€/unit/year) 

E.O.Q of H.P 
(unit) Vehicle Type 

< 1 1818 L 
1 1818 L 
2 1818 L 
3 1605 L 
4 1387 L 
5 1186 M 
6 1083 M 
7 1003 M 
8 870 M 
9 834 M 

10 839 M 
11 800 M 
12 766 M 
13 735 M 
14 689 S 
15 665 S 

> 15 < 665 S 

 
Table 8. Results of Sensitivity Analysis  

on fixed cost of Small Vehicle 
Fixed Cost 

of S.V 
(€) 

E.O.Q of 
H.P 

(unit) 

Vehicle 
Type 

< 10 727 S 
10 727 S 
20 727 S 
30 727 S 
40 727 S 
50 1818 L 
60 1818 L 
70 1818 L 

> 70 1818 L 
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Table 9. Results of Sensitivity Analysis  
on variable cost of Large Vehicle 

Variable Cost 
of L.V 

 (€/unit) 

E.O.Q of H.P 
 (unit) 

Vehicle 
Type 

< 0.08 1818 L 
0.08 1818 L 
0.09 1818 L 

1 1273 M 
1.1 1273 M 

>1.1 1273 M 
 
 

5- CONCLUSIONS AND SUGGESTIONS 
FOR FURTHER RESEARCH 

 
In this paper, we study optimal ordering policy in a 
two-level supply chain. Unlike the most similar models 
which determine the economic order quantity just 
based on inventory costs, in this model, we incorporate 
transportation costs into inventory replenishment 
decisions. The numerical results indicate that our 
model leads to savings in comparison with the 
traditional model in which the transportation cost is not 
considered. For future research we intend to complete 
this model by including the multi-item lot-sizing 
problem.  
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