
DHA-KD: Dynamic Hierarchical Agent Based Key Distribution in Group
Communication ∗

M. Amir Moulavi
Networking Department

Information Technology Services (ITS) Center
Ferdowsi University of Mashhad, Iran

moulavi@acm.org

Jalal A. Nasiri
Computer Engineering Department

Ferdowsi University of Mashhad, Iran
j.nasiri@wali.um.ac.ir

Behnam Bahmani
Computer Engineering Department

Islamic Azad University of Firoozkooh, Iran
b.bahmani@iaufb.ac.ir

Hossein Parvar
Department of Computer Engineering

Islamic Azad University of Mashhad, Iran
parvar@mshdiau.ac.ir

M. Sadeghizadeh
Computer Engineering Department

Ferdowsi University of Mashhad, Iran
ma sa638@stu-mail.um.ac.ir

Mahmoud Naghibzadeh
Computer Engineering Department

Ferdowsi University of Mashhad, Iran
naghibzadeh@ferdowsi.um.ac.ir

Abstract

Confidentiality is one of the most nontrivial issues in se-
crecy of group communication. In order to satisfy confiden-
tiality, symmetric cryptography must be exploited. All sym-
metric algorithms require a shared key between the mem-
bers of group. High frequency in the number of joins and
leaves of members can cause huge number of messages of
data between authorized group members. Although hierar-
chical group communication is a prominent model, it has
not been investigated in security literature as well as other
models. There has been an extensive research on satisfying
confidentiality in group communications on different archi-
tecture other than the hierarchical architecture and the pro-
posed hierarchical models do not use the concept of agents.
A concept that brings its own advantages. In this paper, we
investigate a new approach to secure key management in
hierarchical group communication by means of using intel-
ligent agents. The simulation results show that using agents
reduce network bandwidth and improve and achieve more
performance comparing with other models. Moreover, us-
ing agents makes the architecture more flexible and dynamic
preparing it for Grid Computing technologies.

∗This work was supported by Communications and Computer Research

Center, Ministry of Information Technology, Mashhad, Iran.

1. Introduction

Many group communication applications such as video

conferencing, interactive group games and video on demand

are based upon Multicasting which is an efficient commu-

nication model [12]. They require packet delivery from one

or more authorized sender(s) to a large number of autho-

rized receivers. Since IP multicast sends the packets over

a multicast tree that spans all the member, network band-

width is saved efficiently. In order to protect the top-secret

data from being accessed by non-authorized members, an

appropriate confidentiality mechanism should be proposed

in the group. This method needs that only valid members

could encrypt/decrypt data or generally modify data. Sym-

metric/Asymmetric cryptography mechanisms can be ex-

ploited. However for lowering the complexities of confi-

dentiality and security, it can be assumed that members of

groups use symmetric approach. In this case, a symmetric

key is used by the sender to encrypt the data and also is

used by the receiver to decrypt it. This key is called Traffic
Encryption Key (TEK).

In order to satisfy the secrecy criteria, a rekeying pro-

cess should be performed after each join/leave in the group

because a member which leaves the group should not have

access to transfered data among previous members. This

also applies to the join scenario. This process consists

of generating a new TEK and distributing it among the

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

978-0-7695-3263-9/08 $25.00 © 2008 IEEE

DOI 10.1109/SNPD.2008.23

301

Ninth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing

978-0-7695-3263-9/08 $25.00 © 2008 IEEE

DOI 10.1109/SNPD.2008.23

301

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on December 13, 2008 at 03:11 from IEEE Xplore. Restrictions apply.

current members of the group. A critical issue in this

naive approach is maintaining the scalability. Since the

rekey process should be performed after each modifica-

tion in the group vision which occurs dynamically, it might

be nontrivial in the case of high frequency of joins and

leaves. Many solutions have been proposed in this area

for this problem that can be divided into: centralized, hi-
erarchical, and distributed architectures. In the central-
ized approach [3][11][16][19][20][21][8], a specific entity

assures the key generation, distribution and rekeying pro-

cess. Goal of this approach is to minimize the storage re-

quirements and computational power. In the hierarchical
approach [4][7][9][10][14][17][15], a hierarchy of mangers

perform the key distribution. Finally in distributed ap-

proach [5][6][13][18], a set of entity collaborate to agree

on a group key and distribute the key in the group. There is

no explicit KDC in this approach.

In this paper, we investigate a new approach for dynamic

hierarchical agent-based key distribution in group commu-

nication (DHA-KD). The proposed algorithm saves huge

amount of network bandwidth efficiently comparing to Hi-

KD algorithm [12]. This is achieved by considering Com-
putational Capacity (CC), Load and Local Network Traffic
(LNT).

The remainder of this paper is organized as follows: in

section 2, we present an architectural model. The related

works is discussed in 3. In section 4, we propose our agent-

based model for different scenarios. Simulation results and

comparison with other similar model is described in section

5. Finally we conclude in section 6.

2. Architectural Model

In this section we discuss the basic architecture as build-

ing block which will be used in our algorithm. Let G be

the set of all members of group. The group is divided into

J subgroups (classes) Gi, 0 < i < J . Every class i has

Ni members and the kth member of the nth class is indi-

cated by mn,k. In every class Gi there is an agent agenti
that acts as a coordinator in that class. This agent distribute

the new key among members and also manages that class

membership. These agents from different classes can com-

municate with other agents to update their key management

information.

To satisfy the basic rules which are mentioned in the pre-

vious section, every class Gi and every member mi,j should

maintain a secret key ki for encryption/decryption or gener-

ally any modification of data. In order to achieve this goal,

every key distribution method can be used. In this paper, we

focus on TEK management, however.

We have two type of essential problems in hierarchical

group communication. The first one is meeting the new

security requirements which was discussed in the previous

section. The other issue is the method of regenerating the

keys which will be discussed in forthcoming sections.

3. Related Works

In this section we briefly discuss two main approaches

for regenerating the keys after every changes in group vision

which is referred as Rekeying Process: Naive and Hi-KD.

3.1. Naive Approach Rekeying

In this approach rekeying process is fired whenever

a change is occurred in group vision. In H. R. Hassan

et al. [12] a naive solution is discussed to satisfy the

confidentiality requirements. Its main idea is that in order

to allow a given member mn,k to decrypt messages of class

w, w > n, he should know the key kw. To accomplish that,

it is sufficient that member mn,k has all the keys kg , such

that n ≤ g. Hence mn,k should store J − n + 1 traffic

encryption keys. For example, if G consists of 5 classes,

then m2,i should have the keys of classes 2, 3, 4 and 5:

k2, k3, k4, k5 respectively.

The problem here is that if a key kw is renewed, mem-

bers of classes g, g ≤ w should update their keys. A naive

solution can be that on every join or leave, a new key is gen-

erated for that class and this new key is distributed among

higher and lower ranks. Hence, members of a class like Gi,

should store all the keys kw, i ≤ w. Rekeying process

must be started in four different cases: join, leave, promo-
tion and degradation of a member. All of the four cases are

discussed in the following.

3.1.1 Join and Leave

Join of a new member to class r causes the rekeying process

for all classes u, r ≤ u. If this rekeying process does not

performed, then a new member can decrypt old messages

sent before his membership. Join or backward secrecy has

the following rekeying scheme. First, generate a new key

for rth class. Then, generate new keys for all lower rank

classes u, that is r ≤ u and the last is to distribute the keys

to lower rank classes.

Leave or forward secrecy of a member from the class r
causes the rekeying process for all classes u, r ≤ u like the

previous scheme.

3.1.2 Promotion and Degradation

Promotion or upward secrecy of a member from class r to

the class u, u < r, consists of two rekeying process: a

join to class u and a leave from class r. Thus the rekeying

302302

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on December 13, 2008 at 03:11 from IEEE Xplore. Restrictions apply.

scheme is as follows. First, generate new keys for classes g,

u ≤ g ≤ r and then distribute the new keys.

When degradation or downward secrecy of a member

from class r to class u occurs, the member should no longer

have access to the key. Thus the rekeying scheme for this

case is the same as the promotion.

The naive solution has a critical problem which is the

high overhead and frequency of key exchange. There is a

redundancy between keys maintained by different classes.

This is because the naive approach is based on this assump-

tion that in order to know a key, one must posses it. Simply,

communication between different classes becomes crowded

because of high frequency in the exchange of keys. On each

leave or join, keys should be regenerated to meet the re-

quirements of hierarchical group communication confiden-

tiality.

As a result, this solution needs extra bandwidth for rekeying

process and also storage capacity for storing group keys.

3.2. Hi-KD Approach

In [12], an alternative solution is proposed which is

called Hi-KD. Hi-KD reduces the overhead proposed by

naive solution. It bases on random key and uses hash func-

tion to compute a chain of keys. With every changes in

group vision (join, leave, etc.), a random key is generated

and is sent to the same group and upper group members.

Base on hash function, this newly generated key is the input

to hash function that again generate the key for its successor.

This pattern is repeated for lower groups. This mechanism

is illustrated in Fig. 1.

HASH HASH HASH HASH
K r Kr+1 Kr+2 Kr+3 Ku-1 K u

G G G Gr r+1 r+2 u-1

Figure 1. Key Generation Mechanism in Hi-
KD approach

Comparing to Naive solution, the problem of bandwidth

requirement and storage capacity has been considerably re-

duced by this mechanism. However, The problem with Hi-

KD is that on every join and leave, new keys should be gen-

erated and send over members of all hierarchical groups.

Our approach has solved this recent problem.

4. Our Agent-Based Approach

The proposed method mainly involved with key distribu-

tion and improving the join rekeying scheme. The former is

accomplished by agents and the latter is done on particular

periods.

Our agent-based approach uses a random key Kr and

hash function H to compute a chain of keys like Hi-KD by

using this following formula

δ1
c+1 = H(δ1

c) (1)

where δ1
1 = Kr, and δp

t is the tth class key to use after

the pth key renew. Then each key kn is sent to the corre-

sponding class n. Once the member mn,k of the class n
receives his key, he can compute other classes w, w > n if

needed, by applying w − n times hashing function on kn.

This solution exploits a new join and leave rekeying scheme

that reduces the bandwidth. These schemes are discussed in

the following sections.

M n, k Agent
n

JOIN_REQ

Members of
nClass

JOIN_REQ_MEMB

JOIN_REQ_MEMB_ACK

JOIN_REQ_COMM

Joining Phase

Agent Agent Agent

KEY_DISTKEY_DIST

KEY_DIST_N1

KEY_DIST_N2

KEY_DIST_N3

Key Distribution

Phase

KEY_DIST_ACK

KEY_DIST_ACK

KEY_DIST_N1_ACK

KEY_DIST_N2_ACK

KEY_DIST_N3_ACK

n - 1 n - 2 n - 3

Figure 2. Sequence of Join Mechanism

4.1. Join Rekeying Scheme

Join Rekeying scheme is consist of two main phases:

Joining Phase and Key Distribution Phase. The whole

sequence diagram is illustrated in Fig. 2. In Joining phase,

each agent in each class is responsible for managing the

join and leave of members as described earlier. When a

new member wants to join to class Gi, he sends a request

to the agenti indicating his willing to join to that class

(JOIN REQ). The corresponding agent collects all incoming

requests for joining to that class, and applies the rekeying

generation process on the end of each τ periods. The

coordinator then sends a message to other members of

group indicating the new member (JOIN REQ MEMB). Every

member replies to the coordinator with its acknowledgment

message (JOIN REQ MEMB ACK) showing that he knows the

existence of the new member. The last step in this phase is

that the agent should commit the join of this new member

by replying back to him (JOIN REQ COMM). According to

real simulation results in [1], on average a number of 1706

new members want to join to a class like Gk, which their

requests are sent one after another with a very little time

left between. Using other schemes, the corresponding

agent should generate a new key for that class and send

303303

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on December 13, 2008 at 03:11 from IEEE Xplore. Restrictions apply.

the key to other lower rank classes for each separate new

request. This becomes more important and serious, when

the classes are dispersed in a wide-area system. But by

using periodic rekeying generation, used bandwidth is

reduced excessively.

In our solution, a new member should wait to receive the

new key until the end of current τ period. Fig. 2 shows only

one join request for member M(n,k). At the end of each τ
period, the corresponding agent agentk of Gk class check

to see whether there are any request for join. If there exists

one or more, it acts as follows:

• The key generation mechanism generates a new ran-

dom key δp+1
k and send this key to other members of

group (KEY DIST);

• It computes the chain δp+1
s , k > s using H function;

• Finally, it sends every key δp+1
s , to corresponding class

k, k > s (KEY DIST Ns).

Instead of sending an update message to upper-ranked

classes in order to update their key data bases, we use pull-

based protocol to fulfill the requirements of confidentiality.

There are two general approaches for pull-based protocol.

The first one is Periodic in which each agent pulls new in-

formation updates from lower rank classes in τ periods of

time. The second one is Event-driven in which each agent

trigger the rekeying process for generating new keys and

sends an update message to upper-ranked classes.

Our proposed algorithm exploits periodic pull-based pro-

tocol. Since the average number of requests that is sent to

a group is considerable, event-driven approach can conduct

to Hi-KD mechanism. As a result, we choose periodic pull-

based protocol, in which every agent, agenti, pulls new up-

date regarding key information in τ periods of time from its

lower rank class Gk, k > i.

M n, k Agent
n

Members of
n

Class Agent Agent Agent

KEY_DISTKEY_DIST

KEY_DIST_N1

KEY_DIST_N2

KEY_DIST_N3

Key Distribution

Phase

KEY_DIST_ACK

KEY_DIST_ACK

KEY_DIST_N1_ACK

KEY_DIST_N2_ACK

KEY_DIST_N3_ACK

Leaving Phase

LEAVE_REQ
LEAVE_REQ_MEMB

LEAVE_REQ_MEMB_ACK

LEAVE_REQ_COMM

n - 1 n - 2 n - 3

Figure 3. Sequence of Leave Mechanism

4.2. Leave Rekeying Scheme

Leave Rekeying scheme is also consist of two major

steps: Leaving Phase and Key Distribution Phase. This is

depicted in Fig. 3. As it might be thought, the leave rekey-

ing scheme is similar to the join scheme, but we can not

apply the scheme used for join. When a member send a

message to its class’s agent requesting to leave the current

class (LEAVE REQ), it should not have access to the key from

that time, because it will be marked by the agent as a re-

moved member, but he can still decrypt messages from the

class.

In order to accomplish this, we can not use updating

in τ periods of time. Instead new generated key from

every leave of a class should be propagated immediately

(LEAVE REQ MEMB). Agents corroborate leave requests imme-

diately to satisfy the requirements of confidentiality. Hence,

the scheme is used in leave mechanism is as follows:

• The key generation mechanism generates a new ran-

dom key δp+1
k and send this key to other members of

group (KEY DIST);

• It computes the chain δp+1
s , k > s using H function;

• Finally, it sends every key δp+1
s , k > s to its corre-

sponding class k (KEY DIST Ns).

4.3. Promotion and Degradation Rekeying
Scheme

As discussed earlier in the paper, every promotion and

degradation consists of a join and leave scheme. Hence to

apply the solution for promotion and degradation and sat-

isfy the requirements for confidentiality, explained schemes

for join and leave in previous sections must be exploited.

4.4. Agent Election

There might be some conditions that the agent, agenti,
itself willing to leave a class. In this case a new agent should

be elected from the remaining members of class. If the

agent is selected randomly, there might be situations that the

selected agent is not powerfull enough to take the respon-

sibility of a coordinator. Moreover, network traffic changes

over time and there may be some bottlenecks in the whole

group. In order to overcome this problem, an appropriate

agent should be selected with specific factors from the re-

maining members. There are some issues that should be

taken into account when electing the new coordinator:

• Rekeying Process Construction: Since this process is a

time consuming task, the selected coordinator should

have a high Computational Capacity (CC) and low

working set (load) for a faster key regeneration.

304304

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on December 13, 2008 at 03:11 from IEEE Xplore. Restrictions apply.

• Network Traffic: Since the generated key should be

sent to other members of the current group and agents

of upper groups, the Local Network Traffic (LNT) of

selected agent should be low in order to reduce the time

to send the keys.

Hence, we should compute the ability of each agent and

select the agent with the maximum ability. The ability is

calculated from the following equation:

ability =
1
3
(CC + Load + LNT) (2)

Where CC is Computational Capacity, Load is the

amount of load which is executed on the system and LNT
is the local network traffic. All of the parameters are nor-

malized to the range [0, 1]. Load and LNT is the negative

of them (i.e. 1 − Load). The produced ability value may

a duplicate. This does not cause any problem to the main

algorithm because one of these values is selected. ability
is computed on every change in group vision. Since the

equation is computed on dynamic values, in every rekey-

ing process, the best coordinator among other members is

elected.

To describe the algorithm [2] for agent election, we must

first define the k − neighbors as the set of members with

k distance from the mn,k member in the n class. The algo-

rithm operates in phases. If a member becomes winner in

the kth phase, it can proceed to (k + 1)th phase. In order to

become a winner in the kth phase, it must have the largest

id in its 2k-neighbors. Hence, fewer members proceed to

higher phases and at the end only one member wins the last

phase and that is the agent in that class. The pseudocode for

this algorithm is indicated in Fig. 4.

In general, in phase k, a member mn,k that is the winner

of k − 1 phase, sends <prob> message with its identifier

to its 2k neighborhood. A probe is swallowed by a mem-

ber if it contains an identifier smaller than its own identi-

fier. If the <probe> message arrives at the last member

in the neighborhood without being swallowed, then the last

member sends back a <reply> message to mn,k. If mn,k

receives reply from both directions, it becomes the winner

in that phase. A member that receives its own <probe>
message terminates the algorithm as the leader.

5. Simulation Result

In this section, we provide an overview of our simula-

tion model which is obtained from NS2 by comparing to

previous solutions and our proposed algorithm. The result

of this comparison is indicated in Fig. 5. The simulations

are provided as follows; to generate a real multicast session,

we used the modules presented by Almerath et al. in [1].

These models suggest that the arrival of members follows

Efficient Agent Election

1: ability = 1
3 (CC + Load + LNT)

2: Initially, asleep = true
3: Upon receiving no message
4: if asleep

5: asleep← false
6: send <probe, ability, 0, 1> to left and right

7: Upon receiving < probe, j, k, d > from left

8: if j = ability terminate as the leader
9: if j > ability and d < 2k

10: send < probe, j, k, d + 1 > to right

11: if j > ability and d ≥ 2k

12: send < reply, j, k > to left

13: Upon receiving < reply, j, k > from left

14: if j �= id send < reply, j, k > to right

15: else
16: if already received < reply, j, k > from right

17: send < probe, ability, k + 1, 1 >

Figure 4. Agent Election, Pseudocode for
mn,i

a Poisson process and the membership duration follows as

Exponential distribution.

We have found no statistical studies or distribution of hi-

erarchical group membership yet, but we assume that distri-

bution in each class is exponential and changes over time.

Each subgroup has its own agent that acts as a coordinator

and manages key distribution and membership services.

In our simulation, based on real applications, sending

new key and update message are made by one group class

step. Each member starts the session by joining the group

and at the end of membership in some group class either

leave or rejoin (promotion or degradation) to another group

class with different probability. We consider sessions of

3 hours, a joining member rate of 20 second and average

membership duration of 30 minutes.

In this simulation, we have compared bandwidth perfor-

mances of our solution and previous. Bandwidth refers to

number of keys and messages sent per member for rekeying

when membership changes. Leave rekeying scheme is like

previous one but there is different in joining process which

save up to 22.5% of the bandwidth overhead.

6. Conclusion

In this paper we have investigated the hierarchical group

communication model which is a very promising and reli-

able model comparing with other proposed architecture for

group communication. We have proposed a new approach

305305

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on December 13, 2008 at 03:11 from IEEE Xplore. Restrictions apply.

Figure 5. Comparsion with other models

to secure key management in hierarchical group communi-

cation by means of using intelligent agents. These agents

act as coordinators in group communication and handles all

sort of responsibilities for their group. A new algorithm is

also proposed in this paper for the case of a leaving agent

from the group which another member should be elected

from the remaining members. The selected agent should

have high ability for accomplishing various tasks. In order

to meet these requirements, we used a dynamic formula to

choose the best member for substituting the coordinator.

Simulations have shown that our agent-based algorithm

is improved comparing to previous proposed mechanisms

such as Hi-KD. It reduces the bandwidth by more than

22.5%. Further works can focus on an efficient protocol.

References

[1] K. C. Almeroth and M. H. Ammar. Collecting and modeling

the join/leave behavior of multicast group members in the

mbone. In HPDC, pages 209–216, 1996.
[2] H. Attiya and J. Welch. Distributed computing, fundamen-

tals,simulations, and advanced topics. In Wiley-Intersicence,

2004.
[3] D. Balenson, D. McGrew, and A. Sherman. Key manage-

ment for large dynamic groups: One-way function trees and

amortized initialization. In Internet-Draft, Feburary 1999.
[4] A. Ballardi. Scalable multicast key distribution, May 1996.
[5] C. Becker and U. Wille. Communication complexity of

group key distribution. In 5th ACM Conference on Com-
puterand Communications Security, November 1998.

[6] C. Boyd. On key agreement and conference key agreement.

In Information Security and Privacy: Australasian Confer-
ence, LNCS(1270), pages 294–302, 1997.

[7] B. Briscoe. Marks: Multicast key management using

arbitrarily revealed key sequences. In 1st International
Workshop on Networked Group Communication, November

1999.

[8] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and

B. Pinkas. Multicast security: A taxonomy and some effi-

cient constructions. In In Proceedings of the IEEE INFO-
COM. Vol. 2. (New Yok, N.Y., Mar.), 708-716. 1999.

[9] L. R. Dondeti, S. Mukherjee, and A. Samal. Scalable secure

one-to-many group communication using dual encryption.

In Computer Communications, 23(17), pages 1681–1701,

November 2000.
[10] T. Hardjono, B. Cain, and I. Monga. Intra-domain group key

management for multicast security. In IETF Internet draft,
September 2000.

[11] H. Harney and C. Muckenhirn. roup key management pro-

tocol (gkmp) architecture. In RFC 2093, July 1997.
[12] H. R. Hassan, A. Bouabdallah, H. Bettahar, and Y. Chal-

lal. An efficient key management algorithm for hierarchical

group communication. In First International Conference on
Security and Privacy for Emerging Areas in Communica-
tions Networks, 2005.

[13] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant

key agreement for dynamic collaborative groups. In 7th

ACM Conference on Computer and Communications Secu-
rity, pages 235–244, November 2000.

[14] S. Mittra. Iolus : A framework for scalable secure multicas-

ting. In ACM SIGCOMM, 1997.
[15] M. A. Moulavi and H. Parvar. Agent based bandwidth reduc-

tion for key management in hierarchical group communica-

tion. In 2nd IEEE/Create-Net/ICST International Confer-
ence on Communication Systems Software and Middleware,

pages 1–5, 2007.
[16] A. Perrig, D. Song, and J. Tygar. Elk, a new protocol for

efficient large-group key distribution. In IEEE Security and
Priavcy Symposium, May 2001.

[17] S. Rafaeli and D. Hutchison. Hydra: a decentralized group

key management. In 11th IEEE International WETICE: En-
terprise Security Workshop, June 2002.

[18] O. Rodeh, K. Birman, and D. Dolev. Optimized group rekey

for group communication systems. In Network and Dis-
tributed System Security, February 2000.

[19] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plat-

tner. The versakey framework : Versatile group key man-

agement. In IEEE Journal on Selected Areas in Communi-
cations (Special Issues on Middleware), 17(8), pages 1614–

1631, August 1999.
[20] C. Wong and S. Lam. Keystone: A group key management

service. In International Conference on Telecommunication,

May 2000.
[21] C. K. Wong, M. Gouda, and S. S. Lam. Secure group com-

munications using key graphs. In IEEE/ACM Transactions
on Networking, 8(1), pages 16–30, February 2000.

306306

Authorized licensed use limited to: Ferdowsi University of Mashhad Trial User. Downloaded on December 13, 2008 at 03:11 from IEEE Xplore. Restrictions apply.

