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Abstract 
 

It has been proved that there is no optimal online 
scheduler for uniform parallel machines.  Despite its non-
optimality, EDF is an appropriate algorithm to use in 
such environments. However, its performance 
significantly drops in overloaded situations. Moreover, 
EDF produces a relatively large number of migrations 
which may prove unacceptable for use on some parallel 
machines. In this paper a new algorithm based on fuzzy 
logic for scheduling soft real-time tasks on uniform 
multiprocessors is presented. The performance of this 
algorithm is then compared with that of EDF algorithm. It 
is shown that our proposed approach not only 
demonstrates a performance close to that of EDF in non-
overloaded conditions but also has supremacy over EDF 
in overloaded situations in many aspects. Furthermore, it 
imposes much less overhead on the system. 
 
1. Introduction 

One of the research fields in the area of real-time 
systems to which more attention has been recently paid 
are multiprocessor real-time platforms that include 
several processors on which jobs can get executed. As 
multiprocessor systems are applied in real-time 
applications, scheduling of real-time tasks in such systems 
is of much significance. Two important types of 
multiprocessor systems are identical and uniform parallel 
machines. In the former the processing power of all 
processors is the same, whereas, each processor might 
have a different processing power in the latter case [1]. It 
has been shown that in general there is no optimal 
scheduling algorithm for multiprocessors [2].  

Although many scheduling algorithms focus on timing 
constraints, there are other implicit constraints in the 
environment, such as uncertainty and lack of complete 
knowledge about the environment, dynamicity in the 
world, bounded validity time of information and other 
resource constraints. In real world situations, it would 
often be more realistic to find viable compromises 

between these parameters. For many problems, it makes 
sense to partially satisfy objectives. The satisfaction 
degree can then be used as a parameter for making a 
decision. One especially straightforward method to 
achieve this is the modeling of these parameters through 
fuzzy logic [3]. 
 
2. Related Work 

 
In this part the scheduling algorithms which are served 

as the basis of our new approach are studied. This 
approach uses three criteria, namely deadline, laxity and 
interval, each of which is corresponded to EDF, LLF, and 
RM algorithms, respectively. 

The Earliest Deadline First algorithm (EDF) [4] is a 
dynamic priority algorithm which uses the deadline of a 
task as its priority. The task with the earliest deadline has 
the highest priority, while the lowest priority belongs to 
the task with the latest deadline. This algorithm has been 
proved to be optimal on uniprocessors [5].  

The Least Laxity First (LLF) algorithm [6] assigns 
higher priority to a task with the least laxity. The laxity of 
a real-time task Ti at time t, Li(t), is defined as in 

( ) ( ) ( )i i iL t D t E t= − where Di(t) is the deadline by which 
the task must be completed and Ei(t) is the amount of 
computation remaining to be performed. In other words, 
laxity is a measure of the flexibility available for 
scheduling a task. A laxity of Li(t) means if the task Ti is 
delayed at most by Li(t) time units, it will still meet its 
deadline. 

A task with zero laxity must be scheduled right away 
and executed without preemption or it will fail to meet its 
deadline. The negative laxity indicates that the task will 
miss the deadline, no matter when it is picked up for 
execution. 

The Rate Monotonic (RM) algorithm [4] is a fixed 
priority scheduling algorithm which assigns the highest 
priority to the task with highest frequency (smallest 
interval) in the system, and lowest priority to the task 
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having lowest frequency. At any time, the scheduler 
chooses to execute the task with the highest priority. By 
specifying the period and computational time required by 
the task, the behavior of the system can be categorized a 
priori. 

 
3. Background and definitions 
 

Two important parameters affecting the performance 
of scheduling algorithms on parallel machines are 
preemption and migration. A job executing on a processor 
can be interrupted at any time, and its execution resumed 
later on the same or a different processor. If an interrupted 
task resumes execution on the same processor a 
preemption has occurred, and if its execution resumes on 
a different processor a migration has happened. 

Based on the two aforementioned factors, there are two 
types of scheduling policies in multiprocessor 
environments named global scheduling and partition 
scheduling. Global scheduling algorithms put all the 
arrived tasks with non-zero remaining execution time into 
a queue that is common among the processing nodes. In a 
system with m processors, in every moment, m tasks 
having the highest priorities should be executing 
considering preemptions and migrations, if necessary. 
Partition scheduling algorithms divide the task set into 
partitions (subsets) such that all the tasks within a 
partition are assigned to a processor. In this policy task 
migrations are not allowed. 

In [7] Baruah et al. came to the conclusion that despite 
its non-optimality, EDF is an appropriate algorithm to use 
for online scheduling on uniform multiprocessors. 
However, their implementation suffers from a rather large 
number of migrations due to vast priority fluctuations 
caused by terminating or arrival of jobs with relatively 
nearer deadlines. Task migration cost might be very high. 
For example, in loosely coupled systems such as a cluster 
of workstations a migration is performed so slowly that 
the overhead resulting from excessive migrations may 
prove unacceptable [6]. Another disadvantage of EDF is 
that its behavior becomes unpredictable in overloaded 
situations. That is, there is no guarantee on which jobs 
will meet their deadline. Therefore, the performance of 
EDF drops in overloaded conditions such that it can not 
be considered for use. 

 
4. Fuzzy systems 
 

A Fuzzy Inference System (FIS) tries to derive answers 
from a knowledgebase by using a fuzzy inference engine. 
It consists of an input stage, a processing stage, and an 
output stage.  

The processing stage, which is called the inference 
engine, is based on a collection of logic rules in the form 

of IF-THEN statements, where the IF part is called the 
antecedent and the THEN part is called the consequent. A 
typical FIS has dozens of rules. These rules are stored in a 
knowledgebase. An example of fuzzy IF-THEN rules is 
"IF deadline IS near THEN priority IS high" in which 
deadline and priority are linguistics variables and near 
and high are linguistics terms. 

Sugeno’s fuzzy inference method has three advantages. 
Firstly, it is computationally efficient, which is an 
essential benefit to real-time systems. Secondly, it works 
well with optimization and adaptive techniques. The third 
advantage of Sugeno type inference is that it is well-
suited to mathematical analysis [3]. Owing to the 
aforementioned benefits of Sugeno method, it has been 
applied in our proposed approach. 
 
5. Real-time system model 
 

This research is concentrated on uniform parallel 
machines in soft real-time environments. The algorithms 
being investigated are on-line and use up-to-date 
information for the scheduling activities during the 
systems execution. 

We have focused on periodic tasks and each task's 
deadline is equal to its period. The reason for this choice 
is that it has been proved that a periodic task model is 
useful for modeling and analysis of majority of real-time 
systems [11]. Moreover, load factor measurement is 
easier and more accurate for periodic tasks. All tasks are 
synchronous i.e. their first request arrive simultaneously 
at the time zero. Such systems are common and applicable 
[12]. 

Tasks are preemptable and in each scheduling event a 
dispatcher decides which task to be performed next. In 
addition, a task is not allowed to run concurrently (on 
more than one processor at a time). Tasks must declare 
their characteristics and requirements such as interval, 
deadline and Worst Case Execution Time (WCET) at 
their arrival. The intervals and execution times are correct 
multiples of one time slice. The actual execution time of 
each task is equal to its WCET. Tasks are not removed 
from the local memory or cache before they migrate to 
another node. 

Scheduling algorithms must prevent simultaneous 
access to resources and shared devices. We assume the 
tasks are independent and do not need to do I/O 
operations. Therefore, the concurrency control matters 
have not been considered. 
 
6. Proposed approach 
 

Our proposed algorithm is based on our previous 
contribution called Highest Fuzzy Priority First (HFPF) 
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Algorithm [14]. Although HFPF has supremacy over EDF 
in some aspects, it imposes more overhead to the system 
in terms of migrations than EDF does. Besides, it suffers 
from unpredictability, resulting in a relatively poor 
schedule. Therefore, we have applied some modifications 
to our method to decrease the number of task migrations 
and also to add predictability to its behavior. 

In order to decrease the number of migrations we 
prevent a job from moving to another processor if it is 
among the m higher priority jobs. Therefore, a job will 
continue its execution on the same processor if possible. 
This concept is known as processor affinity. By 
scheduling tasks on the processor whose local memory or 
cache already contains the necessary data, we can 
significantly reduce the execution time and thus overhead 
of the system. 

In order to give the scheduler a more predictable 
behavior we first perform a feasibility check to see 
whether a job has a chance to meet its deadline. If so, the 
job is allowed to get executed. Having known the 
deadline of a task and its remaining execution time it is 
possible to verify whether it has the opportunity to meet 
its deadline. More precisely, this verification can be done 
by measuring the tasks’ laxity. 

The block diagram of our fuzzy system is presented in 
Fig. 1. In the proposed model, the input stage consists of 
three linguistic variables, namely deadline, laxity and 
interval. The values of these input variables are obtained 
from the corresponding characteristics of tasks. Since the 
mentioned characteristics may vary a lot from task to task, 
they must be normalized. Therefore, we normalize the 
deadline, laxity and interval to numbers between 0 and 1.  
 

 
Figure 1. Inference system block diagram 

 
Our proposed system has 5 rules which are shown in 

Fig. 2. In an FIS, the number of rules has a direct effect 
on the time complexity of the inference process. 
Therefore, having fewer rules may result in a better 
system performance. 
 
 

 

1. IF deadline IS near THEN priority IS very high 
2. IF laxity IS near THEN priority IS urgent 
3. IF interval IS small THEN priority IS high 
4. IF deadline IS far THEN priority IS low 
5. IF laxity IS far THEN priority IS very low 
 
 

Figure 2. Fuzzy rule-base 
 

We use the aforementioned FIS to calculate the 
dynamic priority of tasks. Consequently, the following 
algorithm is performed at every scheduling event: 

 
6.1. Highest Fuzzy Priority First (HFPF) 
Algorithm 
 

Let m denote the number of processing nodes and n, 
( )n m≥  denote the number of available tasks in a uniform 
parallel real-time system. Let s1 , s2 , . . . , sm denote the 
computing capacity of available processing nodes indexed 
in a non-increasing manner: 1j js s +≥  for all j, 1 < j < m. 
We assume that all speeds are positive – i.e., sj > 0 for all 
j. 

In this section we present the six steps of the HFPF 
algorithm. Obviously, each task which is picked up for 
execution is not considered for execution by the other 
processors.  
1. For each task Ti feed its corresponding deadline, 

laxity, and interval to fuzzy inference engine. Then 
consider the output as the priority of task Ti. 

2. Perform a feasibility check to specify the tasks which 
have a chance to meet their deadline and put them in 
set A. Put the remaining tasks in set B. 

3. Sort both task sets A and B according to their 
priorities in a non-ascending order. 

Let k denote the number of tasks in set A – i.e. the 
number of tasks that have the opportunity to meet their 
deadline.  
4. For all processor j, ( min( , ))j k m≤  check whether a 

task which was last running on the jth processor is 
among the first min(k, m) tasks of set A. If so assign 
it to the jth processor. 

At this point there might be some processors to which 
no task has been assigned yet.  
5. For all j, ( min( , ))j k m≤  if no task is assigned to the 

jth processor, select the task with highest priority from 
remaining tasks of A and assign it to the jth processor. 

If k m≥ , each processor have a task to process and the 
algorithm is finished. 
6. If k < m, for all j,  ( )k j m< ≤  assign the task with 

highest priority from B to the jth processor. 
The sixth step is optional and all of the tasks from B 

will miss their deadlines. 
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7. Performance evaluation 
 

In this section, we study the performance of our 
proposed algorithm (HFPF) based on simulation and 
compare it with that of global EDF algorithm. Load factor 
is considered as main parameter and its influence on the 
performance metrics below as dependent variables is 
presented [21]: 
• success ratio 
• response time 
• preemptions and migrations 
• CPU utilization 
• load balance 

In the experiments that we present later, in order to 
minimize the influence of exceptional states, each 
experiment was repeated 100 times and the results were 
averaged out. The simulation time is equal to a meta 
period which is equivalent to the smallest common 
multiple of all tasks' periods. It should be considered that 
presented results are in fact the average of the obtained 
values from all processors.  

Load factor of task Ti is defined as the ratio of its 
WCET (Ei) to its request period (Pi). For n periodic tasks, 
load factor is equal to: 

1

n
i

i i

EL
P=

=∑
 

In multiprocessor environments, the overall load factor 
is the sum of all processors' load factor. 
 
7.1. Success ratio 

 
Figure 3. Success ratio 

 
Success ratio is defined as the ratio of the jobs that have 

been successfully completed to the jobs that arrived to the 
system [13]. As illustrated in Fig. 3, both algorithms show 
a near optimal performance in non-overloaded situations. 
Nonetheless, in overloaded conditions, the performance of 
the both methods descends. Part of this performance drop 

is due to the fact that the system does not have the 
capacity to meet al deadlines. However, HFPF tries to 
fully utilize the computing capacity of available 
processing nodes, and shows a better performance. 
 
7.2. Response time 

 
Response time is defined as the time between arriving a 

request and completion of its processing. Obviously it is 
not influenced by the tasks which fail to meet their 
deadlines. A point to be considered is that due to presence 
of the tasks with different periods, the absolute numeric 
values are meaningless. Therefore, we use response ratio 
instead of response time and define it as the ratio of a 
task's response time to its period.  

 
Figure 4. Response time 

 
Fig. 4 depicts the observed response ratio. The two 

algorithms in non-overloaded conditions have close 
performances. In overloaded conditions, however, HFPF 
algorithm shows a better performance. The diagram 
suggests that in overloaded conditions tasks are 
completed relatively sooner when using HFPF. 
 
7.3. Preemptions and migrations 

 
One of the most significant factors influencing 

scheduling overload is the number of produced 
preemptions and migrations, and our aim here is to 
measure their values for each of the compared algorithms. 
In this case, due to different number of tasks in diverse 
conditions, applying absolute numeral values is 
meaningless. As a result, we use preemption ratio and 
migration ratio, instead of preemption and migration, and 
define them as the ratio of the total number of 
preemptions to the total number of arrived requests that 
have the chance to be executed, and the ratio of the total 
number of migrations to the total number of arrived 
requests that are picked up for execution, respectively. 
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Fig. 5 illustrates the produced (inter-processor) 
preemption ratio indicating that the supremacy is with 
EDF algorithm. A preemption ratio of 1.0 means that on 
average jobs are preempted once per release. Since 
preemption ratio for both algorithms is less than 1.0 it is 
acceptable and the two algorithms incur a very trivial 
overhead in term of preemptions. 

 
Figure 5. Preemption ratio 

 
In Fig. 6, the produced migration ratio has been 

depicted. Unlike the previous diagram, HFPF algorithm 
produces much less migrations than EDF does. The 
migration ratio of our proposed algorithm is near 1.0 
meaning that on average a typical task migrates once per 
release. Whereas the migration ratio of EDF is several 
times as much as that of HFPF. 

 
Figure 6. Migration ratio 

The cost of each migration is several times as much as 
the cost of preemption. This is due to the fact that all of 
the necessary data for preemption exists in the local 
memory or perhaps in the cache of the same processor. 
While a migration means reading the required data from 
another processor's local memory or the shared memory. 

The above diagram shows that our proposed algorithm 
imposes much less overhead on the system. 
 
7.4. CPU utilization 

 
CPU utilization is the percentage of CPU time in 

which, the CPU has not been idle with respect to the time 
passed. Therefore, it does not include the times in which 
CPU has had idle processing or has been processing the 
jobs which have ultimately been missed. 

In Fig. 7 the CPU utilization of the two algorithms has 
been illustrated. Both algorithms have approximately the 
same performance in low load factor conditions and use 
the maximum possible CPU resources. However, in 
overloaded conditions the HFPF algorithm almost fully 
utilizes the CPUs. This considerable improvement is due 
to performing feasibility check. 

 
Figure 7. CPU utilization 

 
7.5. Load balance 

Load balance means steady distribution of load among 
processors in such a way that minimizes the load 
difference. Regular load balance among processors not 
only decreases the response time, but also increases 
system's reliability which is very significant in real-time 
systems. Another advantage of a balanced system is the 
minimized total power consumption. The length of 
schedule in balanced case is also minimized. We apply 
the formula below for defining the system's load balance 
[14]: 

11

m

j
j

U U

m U
=

−
−

×

∑

 
in which m is the number of processors. U  denotes the 
average CPU utilization and Uj represents the jth 
processor's utilization. Fig. 8 illustrates the load balance 
for both algorithms. Apparently, HFPF algorithm results 
in a balanced schedule in overloaded conditions. 
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Figure 8. Load balance 

 
8. Conclusion 
 

In this paper a new fuzzy-based algorithm, called 
HFPF, for scheduling real-time tasks on uniform parallel 
machines is presented. The performance of this algorithm 
is then compared with that of EDF algorithm. It is shown 
than our proposed approach not only demonstrates a 
performance close to that of EDF in non-overloaded 
conditions but also it has supremacy over EDF in 
overloaded situations in many aspects. We show that 
traditional EDF algorithm which ignores the location of 
tasks when assigning them to processors, incurs a 
significant performance penalty on the system. Since 
HFPF imposes much less overhead in terms of migrations 
on the system, it could be more appropriate for use on 
parallel machines in which the cost of migrations is 
relatively high. 
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