
A Fuzzy-based Multi-criteria Scheduler for Uniform Multiprocessor
Real-time Systems

Vahid Salmani
Dept. of Computer

Engineering,
Ferdowsi University of

Mashhad, Iran
salmani@um.ac.ir

Roya Ensafi
Dept. of Computer

Engineering,
 Ferdowsi University of

Mashhad, Iran
ensafi_roya@ieee.org

Narges Khatib-Astaneh
Dept. of Computer

Engineering, Payame
Noor University of

Mashhad, Iran
narges.khatib@yahoo.com

Mahmoud Naghibzadeh
Dept. of Computer

Engineering,
Ferdowsi University of

Mashhad, Iran
naghib@um.ac.ir

Abstract

It has been proved that there is no optimal online
scheduler for uniform parallel machines. Despite its non-
optimality, EDF is an appropriate algorithm to use in
such environments. However, its performance
significantly drops in overloaded situations. Moreover,
EDF produces a relatively large number of migrations
which may prove unacceptable for use on some parallel
machines. In this paper a new algorithm based on fuzzy
logic for scheduling soft real-time tasks on uniform
multiprocessors is presented. The performance of this
algorithm is then compared with that of EDF algorithm. It
is shown that our proposed approach not only
demonstrates a performance close to that of EDF in non-
overloaded conditions but also has supremacy over EDF
in overloaded situations in many aspects. Furthermore, it
imposes much less overhead on the system.

1. Introduction

One of the research fields in the area of real-time
systems to which more attention has been recently paid
are multiprocessor real-time platforms that include
several processors on which jobs can get executed. As
multiprocessor systems are applied in real-time
applications, scheduling of real-time tasks in such systems
is of much significance. Two important types of
multiprocessor systems are identical and uniform parallel
machines. In the former the processing power of all
processors is the same, whereas, each processor might
have a different processing power in the latter case [1]. It
has been shown that in general there is no optimal
scheduling algorithm for multiprocessors [2].

Although many scheduling algorithms focus on timing
constraints, there are other implicit constraints in the
environment, such as uncertainty and lack of complete
knowledge about the environment, dynamicity in the
world, bounded validity time of information and other
resource constraints. In real world situations, it would
often be more realistic to find viable compromises

between these parameters. For many problems, it makes
sense to partially satisfy objectives. The satisfaction
degree can then be used as a parameter for making a
decision. One especially straightforward method to
achieve this is the modeling of these parameters through
fuzzy logic [3].

2. Related Work

In this part the scheduling algorithms which are served

as the basis of our new approach are studied. This
approach uses three criteria, namely deadline, laxity and
interval, each of which is corresponded to EDF, LLF, and
RM algorithms, respectively.

The Earliest Deadline First algorithm (EDF) [4] is a
dynamic priority algorithm which uses the deadline of a
task as its priority. The task with the earliest deadline has
the highest priority, while the lowest priority belongs to
the task with the latest deadline. This algorithm has been
proved to be optimal on uniprocessors [5].

The Least Laxity First (LLF) algorithm [6] assigns
higher priority to a task with the least laxity. The laxity of
a real-time task Ti at time t, Li(t), is defined as in

() () ()i i iL t D t E t= − where Di(t) is the deadline by which
the task must be completed and Ei(t) is the amount of
computation remaining to be performed. In other words,
laxity is a measure of the flexibility available for
scheduling a task. A laxity of Li(t) means if the task Ti is
delayed at most by Li(t) time units, it will still meet its
deadline.

A task with zero laxity must be scheduled right away
and executed without preemption or it will fail to meet its
deadline. The negative laxity indicates that the task will
miss the deadline, no matter when it is picked up for
execution.

The Rate Monotonic (RM) algorithm [4] is a fixed
priority scheduling algorithm which assigns the highest
priority to the task with highest frequency (smallest
interval) in the system, and lowest priority to the task

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI

173

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.56

173

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.56

179

10th International Conference on Information Technology

0-7695-3068-0/07 $25.00 © 2007 IEEE
DOI 10.1109/ICIT.2007.56

179

having lowest frequency. At any time, the scheduler
chooses to execute the task with the highest priority. By
specifying the period and computational time required by
the task, the behavior of the system can be categorized a
priori.

3. Background and definitions

Two important parameters affecting the performance
of scheduling algorithms on parallel machines are
preemption and migration. A job executing on a processor
can be interrupted at any time, and its execution resumed
later on the same or a different processor. If an interrupted
task resumes execution on the same processor a
preemption has occurred, and if its execution resumes on
a different processor a migration has happened.

Based on the two aforementioned factors, there are two
types of scheduling policies in multiprocessor
environments named global scheduling and partition
scheduling. Global scheduling algorithms put all the
arrived tasks with non-zero remaining execution time into
a queue that is common among the processing nodes. In a
system with m processors, in every moment, m tasks
having the highest priorities should be executing
considering preemptions and migrations, if necessary.
Partition scheduling algorithms divide the task set into
partitions (subsets) such that all the tasks within a
partition are assigned to a processor. In this policy task
migrations are not allowed.

In [7] Baruah et al. came to the conclusion that despite
its non-optimality, EDF is an appropriate algorithm to use
for online scheduling on uniform multiprocessors.
However, their implementation suffers from a rather large
number of migrations due to vast priority fluctuations
caused by terminating or arrival of jobs with relatively
nearer deadlines. Task migration cost might be very high.
For example, in loosely coupled systems such as a cluster
of workstations a migration is performed so slowly that
the overhead resulting from excessive migrations may
prove unacceptable [6]. Another disadvantage of EDF is
that its behavior becomes unpredictable in overloaded
situations. That is, there is no guarantee on which jobs
will meet their deadline. Therefore, the performance of
EDF drops in overloaded conditions such that it can not
be considered for use.

4. Fuzzy systems

A Fuzzy Inference System (FIS) tries to derive answers
from a knowledgebase by using a fuzzy inference engine.
It consists of an input stage, a processing stage, and an
output stage.

The processing stage, which is called the inference
engine, is based on a collection of logic rules in the form

of IF-THEN statements, where the IF part is called the
antecedent and the THEN part is called the consequent. A
typical FIS has dozens of rules. These rules are stored in a
knowledgebase. An example of fuzzy IF-THEN rules is
"IF deadline IS near THEN priority IS high" in which
deadline and priority are linguistics variables and near
and high are linguistics terms.

Sugeno’s fuzzy inference method has three advantages.
Firstly, it is computationally efficient, which is an
essential benefit to real-time systems. Secondly, it works
well with optimization and adaptive techniques. The third
advantage of Sugeno type inference is that it is well-
suited to mathematical analysis [3]. Owing to the
aforementioned benefits of Sugeno method, it has been
applied in our proposed approach.

5. Real-time system model

This research is concentrated on uniform parallel
machines in soft real-time environments. The algorithms
being investigated are on-line and use up-to-date
information for the scheduling activities during the
systems execution.

We have focused on periodic tasks and each task's
deadline is equal to its period. The reason for this choice
is that it has been proved that a periodic task model is
useful for modeling and analysis of majority of real-time
systems [11]. Moreover, load factor measurement is
easier and more accurate for periodic tasks. All tasks are
synchronous i.e. their first request arrive simultaneously
at the time zero. Such systems are common and applicable
[12].

Tasks are preemptable and in each scheduling event a
dispatcher decides which task to be performed next. In
addition, a task is not allowed to run concurrently (on
more than one processor at a time). Tasks must declare
their characteristics and requirements such as interval,
deadline and Worst Case Execution Time (WCET) at
their arrival. The intervals and execution times are correct
multiples of one time slice. The actual execution time of
each task is equal to its WCET. Tasks are not removed
from the local memory or cache before they migrate to
another node.

Scheduling algorithms must prevent simultaneous
access to resources and shared devices. We assume the
tasks are independent and do not need to do I/O
operations. Therefore, the concurrency control matters
have not been considered.

6. Proposed approach

Our proposed algorithm is based on our previous
contribution called Highest Fuzzy Priority First (HFPF)

174174180180

Algorithm [14]. Although HFPF has supremacy over EDF
in some aspects, it imposes more overhead to the system
in terms of migrations than EDF does. Besides, it suffers
from unpredictability, resulting in a relatively poor
schedule. Therefore, we have applied some modifications
to our method to decrease the number of task migrations
and also to add predictability to its behavior.

In order to decrease the number of migrations we
prevent a job from moving to another processor if it is
among the m higher priority jobs. Therefore, a job will
continue its execution on the same processor if possible.
This concept is known as processor affinity. By
scheduling tasks on the processor whose local memory or
cache already contains the necessary data, we can
significantly reduce the execution time and thus overhead
of the system.

In order to give the scheduler a more predictable
behavior we first perform a feasibility check to see
whether a job has a chance to meet its deadline. If so, the
job is allowed to get executed. Having known the
deadline of a task and its remaining execution time it is
possible to verify whether it has the opportunity to meet
its deadline. More precisely, this verification can be done
by measuring the tasks’ laxity.

The block diagram of our fuzzy system is presented in
Fig. 1. In the proposed model, the input stage consists of
three linguistic variables, namely deadline, laxity and
interval. The values of these input variables are obtained
from the corresponding characteristics of tasks. Since the
mentioned characteristics may vary a lot from task to task,
they must be normalized. Therefore, we normalize the
deadline, laxity and interval to numbers between 0 and 1.

Figure 1. Inference system block diagram

Our proposed system has 5 rules which are shown in

Fig. 2. In an FIS, the number of rules has a direct effect
on the time complexity of the inference process.
Therefore, having fewer rules may result in a better
system performance.

1. IF deadline IS near THEN priority IS very high
2. IF laxity IS near THEN priority IS urgent
3. IF interval IS small THEN priority IS high
4. IF deadline IS far THEN priority IS low
5. IF laxity IS far THEN priority IS very low

Figure 2. Fuzzy rule-base

We use the aforementioned FIS to calculate the
dynamic priority of tasks. Consequently, the following
algorithm is performed at every scheduling event:

6.1. Highest Fuzzy Priority First (HFPF)
Algorithm

Let m denote the number of processing nodes and n,
()n m≥ denote the number of available tasks in a uniform
parallel real-time system. Let s1 , s2 , . . . , sm denote the
computing capacity of available processing nodes indexed
in a non-increasing manner: 1j js s +≥ for all j, 1 < j < m.
We assume that all speeds are positive – i.e., sj > 0 for all
j.

In this section we present the six steps of the HFPF
algorithm. Obviously, each task which is picked up for
execution is not considered for execution by the other
processors.
1. For each task Ti feed its corresponding deadline,

laxity, and interval to fuzzy inference engine. Then
consider the output as the priority of task Ti.

2. Perform a feasibility check to specify the tasks which
have a chance to meet their deadline and put them in
set A. Put the remaining tasks in set B.

3. Sort both task sets A and B according to their
priorities in a non-ascending order.

Let k denote the number of tasks in set A – i.e. the
number of tasks that have the opportunity to meet their
deadline.
4. For all processor j, (min(,))j k m≤ check whether a

task which was last running on the jth processor is
among the first min(k, m) tasks of set A. If so assign
it to the jth processor.

At this point there might be some processors to which
no task has been assigned yet.
5. For all j, (min(,))j k m≤ if no task is assigned to the

jth processor, select the task with highest priority from
remaining tasks of A and assign it to the jth processor.

If k m≥ , each processor have a task to process and the
algorithm is finished.
6. If k < m, for all j, ()k j m< ≤ assign the task with

highest priority from B to the jth processor.
The sixth step is optional and all of the tasks from B

will miss their deadlines.

175175181181

7. Performance evaluation

In this section, we study the performance of our
proposed algorithm (HFPF) based on simulation and
compare it with that of global EDF algorithm. Load factor
is considered as main parameter and its influence on the
performance metrics below as dependent variables is
presented [21]:
• success ratio
• response time
• preemptions and migrations
• CPU utilization
• load balance

In the experiments that we present later, in order to
minimize the influence of exceptional states, each
experiment was repeated 100 times and the results were
averaged out. The simulation time is equal to a meta
period which is equivalent to the smallest common
multiple of all tasks' periods. It should be considered that
presented results are in fact the average of the obtained
values from all processors.

Load factor of task Ti is defined as the ratio of its
WCET (Ei) to its request period (Pi). For n periodic tasks,
load factor is equal to:

1

n
i

i i

EL
P=

=∑

In multiprocessor environments, the overall load factor
is the sum of all processors' load factor.

7.1. Success ratio

Figure 3. Success ratio

Success ratio is defined as the ratio of the jobs that have

been successfully completed to the jobs that arrived to the
system [13]. As illustrated in Fig. 3, both algorithms show
a near optimal performance in non-overloaded situations.
Nonetheless, in overloaded conditions, the performance of
the both methods descends. Part of this performance drop

is due to the fact that the system does not have the
capacity to meet al deadlines. However, HFPF tries to
fully utilize the computing capacity of available
processing nodes, and shows a better performance.

7.2. Response time

Response time is defined as the time between arriving a

request and completion of its processing. Obviously it is
not influenced by the tasks which fail to meet their
deadlines. A point to be considered is that due to presence
of the tasks with different periods, the absolute numeric
values are meaningless. Therefore, we use response ratio
instead of response time and define it as the ratio of a
task's response time to its period.

Figure 4. Response time

Fig. 4 depicts the observed response ratio. The two

algorithms in non-overloaded conditions have close
performances. In overloaded conditions, however, HFPF
algorithm shows a better performance. The diagram
suggests that in overloaded conditions tasks are
completed relatively sooner when using HFPF.

7.3. Preemptions and migrations

One of the most significant factors influencing

scheduling overload is the number of produced
preemptions and migrations, and our aim here is to
measure their values for each of the compared algorithms.
In this case, due to different number of tasks in diverse
conditions, applying absolute numeral values is
meaningless. As a result, we use preemption ratio and
migration ratio, instead of preemption and migration, and
define them as the ratio of the total number of
preemptions to the total number of arrived requests that
have the chance to be executed, and the ratio of the total
number of migrations to the total number of arrived
requests that are picked up for execution, respectively.

176176182182

Fig. 5 illustrates the produced (inter-processor)
preemption ratio indicating that the supremacy is with
EDF algorithm. A preemption ratio of 1.0 means that on
average jobs are preempted once per release. Since
preemption ratio for both algorithms is less than 1.0 it is
acceptable and the two algorithms incur a very trivial
overhead in term of preemptions.

Figure 5. Preemption ratio

In Fig. 6, the produced migration ratio has been

depicted. Unlike the previous diagram, HFPF algorithm
produces much less migrations than EDF does. The
migration ratio of our proposed algorithm is near 1.0
meaning that on average a typical task migrates once per
release. Whereas the migration ratio of EDF is several
times as much as that of HFPF.

Figure 6. Migration ratio

The cost of each migration is several times as much as
the cost of preemption. This is due to the fact that all of
the necessary data for preemption exists in the local
memory or perhaps in the cache of the same processor.
While a migration means reading the required data from
another processor's local memory or the shared memory.

The above diagram shows that our proposed algorithm
imposes much less overhead on the system.

7.4. CPU utilization

CPU utilization is the percentage of CPU time in

which, the CPU has not been idle with respect to the time
passed. Therefore, it does not include the times in which
CPU has had idle processing or has been processing the
jobs which have ultimately been missed.

In Fig. 7 the CPU utilization of the two algorithms has
been illustrated. Both algorithms have approximately the
same performance in low load factor conditions and use
the maximum possible CPU resources. However, in
overloaded conditions the HFPF algorithm almost fully
utilizes the CPUs. This considerable improvement is due
to performing feasibility check.

Figure 7. CPU utilization

7.5. Load balance

Load balance means steady distribution of load among
processors in such a way that minimizes the load
difference. Regular load balance among processors not
only decreases the response time, but also increases
system's reliability which is very significant in real-time
systems. Another advantage of a balanced system is the
minimized total power consumption. The length of
schedule in balanced case is also minimized. We apply
the formula below for defining the system's load balance
[14]:

11

m

j
j

U U

m U
=

−
−

×

∑

in which m is the number of processors. U denotes the
average CPU utilization and Uj represents the jth
processor's utilization. Fig. 8 illustrates the load balance
for both algorithms. Apparently, HFPF algorithm results
in a balanced schedule in overloaded conditions.

177177183183

Figure 8. Load balance

8. Conclusion

In this paper a new fuzzy-based algorithm, called
HFPF, for scheduling real-time tasks on uniform parallel
machines is presented. The performance of this algorithm
is then compared with that of EDF algorithm. It is shown
than our proposed approach not only demonstrates a
performance close to that of EDF in non-overloaded
conditions but also it has supremacy over EDF in
overloaded situations in many aspects. We show that
traditional EDF algorithm which ignores the location of
tasks when assigning them to processors, incurs a
significant performance penalty on the system. Since
HFPF imposes much less overhead in terms of migrations
on the system, it could be more appropriate for use on
parallel machines in which the cost of migrations is
relatively high.

9. References

[1] J. Goossens, and P. Richard, Overview of real-time

scheduling problems, ninth international workshop
on project management and Scheduling, Nancy,
France, April 2004, pp. 13-22.

[2] K. Mok, and M. L. Dertouzos, Multiprocessor
scheduling in a hard real-time environment, the 7th
IEEE Texas Conference on Computing Systems,
November 1978, pp. 5-12.

[3] M. Sabeghi, M. Naghibzadeh, T. Taghavi,
Scheduling Non-Preemptive Periodic Tasks in Soft
Real-Time Systems Using Fuzzy Inference, the 9th
IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed
Computing, April 2006.

[4] L. Liu, and J. W. Layland, Scheduling algorithms for
multiprogramming in a hard real-time environment,
JACM, Vol. 20, No. 1, Jan. 1973, pp. 46-61.

[5] M. L. Dertouzos, Control robotics: the procedural
control of physical processes, IFIP Congress,
Stockholm, Sweden, August 5-10, 1974, pp. 807-813.

[6] A. Mok. “Fundamental Design Problems of
Distributed Systems for Hard Real-time
Environments”, PhD thesis, Massachusetts Institute
of Technology, Cambridge, MA, 1983.

[7] S. Baruah, S. Funk, and J. Goossens, Robustness
Results Concerning EDF Scheduling upon Uniform
Multiprocessors, IEEE Trans. Computers, VOL. 52,
NO. 9, Sep 2003, pp. 1185-1195.

[8] L. Wang, A course in fuzzy systems and control,
Prentice Hall, August 1996.

[9] E.H. Mamdani, S. Assilian, An experiment in
linguistic synthesis with a fuzzy logic controller,
International Journal of Man-Machine Studies, Vol.
7, No. 1, pp1-13, 1975.

[10] M. Sugeno, Industrial applications of fuzzy control,
Elsevier Science Inc., New York, NY, 1985.

[11] J. Goossens, S. Baruah, and S. Funk, Real-time
scheduling on multiprocessor, the 10th International
Conference on Real-Time System, 2002.

[12] J. Goossens, S. Funk, and S. Baruah, EDF scheduling
on multiprocessor platforms: some (perhaps)
counterintuitive observations, the International
Conference on Real-Time Computing Systems and
Applications (RTCSA 2002), Tokyo, Japan, March
18-20, 2002, pp. 321-329.

[13] B. Andersson, and J. Jonsson, Fixed-priority
preemptive multiprocessor scheduling: to partition or
not to partition, 7th International Conference on
Real-Time Computing Systems and Applications
(RTCSA'2000), Cheju Island, South Korea, December
12-14, 2000, pp. 337-346.

[14] V. Salmani, M. Naghibzadeh, M. Kahani, and S. K.
Nejad, “Multi-criteria Scheduling of Soft Real-time
Tasks on Uniform Multiprocessors Using Fuzzy
Inference,” in Proc. International Conference on
Systems, Computing Sciences & Software
Engineering (SCS2 06), University of Bridgeport,
December 4 – 14, 2006.

178178184184

