12" International CSI Computer Conference (CSICC'07)
Shahid Beheshti University, Tehran, Iran, 20-22 February 2007

L

Computer Society of Iran

An Iterative Geometrical Noise Cancellation Approach
to Closed-form Camera Pose Estimation

Kambiz Rahbar', Hamid Reza Pourreza®

! SaShiraz Electro-optic and Laser Technology Research Center,
Shiraz, Iran

rahbar@sashiraz.co.ir

* Department of Computer Engineering, Faculty of Engineering,
Ferdowsi University, Mashad, Iran

hpourreza@um.ac.ir

Abstract

This research addresses a new iterative geometrical noise cancellation method for closed-form camera pose
estimation based on collinearity theory. We first explain how to estimate camera position and it’s orientation by
employing extra nonsingular point of the edge line of the landmark’s corner through a closed-form geometrical
pose estimation algorithm. Then, we propose a new iterative noise cancellation algorithm to reduce the
estimation error of camera transaction matrix, which has the most portion in camera pose estimation errors. To
validate our proposed method, we test it as a computer simulation. The results show that this method is efficient,
accurate and robustness. But the drawback is that the camera rotation matrix, which used in noise cancellation

algorithm, may not always be inverseable.
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1. Introduction

During Recent decades, the camera pose estimation
project stands out and attract itself special attentions.
Generally, we can categorize camera pose estimation
methods into two main trends: first, methods employing
registered labels in database and try to find the position of
the camera based on the comparison between capture
features and database. For instance Santos et al [7]
introduced an iterative geometric method for pose
estimation from four co-planar points. They tried to
identify possible labels composed of markers in a 2D
post-processing by using a divide and conquer strategy to
segment the camera’s image space and attempted an
iterative geometric 3D reconstruction of position and
orientation in camera space, and finally they compared
reconstructed labels to database for identification; And
second, mathematical and geometrical methods which
employing geometrical relations between captured
images and camera position to solve the position and
orientation of the camera; for instance Shi et al [2, 3]
estimated the camera position and orientation from 2D-
3D corner correspondence when vertex of the corner is
occluded and Lee et al [6] integrated precise position and
shape information of an object which is obtained by a
pattern recognition procedure into the calibration process
based upon a point correspondence scheme to estimate
the position and orientation of a camera.

Anyhow, each category has its own advantages and
disadvantages. For instance, also techniques based on the
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registered labels in database may be run faster, but they
may lost pose estimation accuracy and are useful just for
some applications in closed area.

Anyhow here, our work is based on Shi et al [2, 3] report.
We first estimate camera position and it’s orientation
through mathematical and geometrical relations between
captured image and camera position. Then, we try to
improve the results accuracy by introducing new iterative
noise cancellation algorithm which is based on
collinearity theory. It should be noted that, here we
assume that all of the intrinsic camera parameters are well
known [4, 5, 8] and the image at hand which will be used
for camera pose estimation is free from the any affect of
radial distortion and slant.

This paper organized as follows: Section II describes
geometrical closed-form pose estimation. Section III
studies the collinearity theory. Section IV presents an
iterative geometrical noise cancellation algorithm.
Section V reports and analyzes the simulation results, and
finally section VI gives the paper conclusions.

2. Closed-form geometrical pose
estimation

Here, we are going to describe Shi et al [2, 3] method,
which is based on mathematical and geometrical relations
between captured image and camera position. It should be
noted that, we assume all of the intrinsic camera
parameters are well known and the image at hand which
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will be used for camera pose estimation is free from the
any affect of radial distortion and slant.
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Fig.1: Basic imaging geometry of the corner

Fig.2: Edge lines I; and I; of the corner

Fig.1 shows the imagining geometry condition to the
problem. Assume that, all of the landmarks as shown in
fig.2, which are used for pose estimation have the
orthogonal corners; And let O-UVW be space
coordinate system fixed on the ground, and 0 — Xyz be

the camera coordinate system, which is chosen to be
fixed on the camera with the origin coinciding with the
center of the camera and the z-axis coinciding with the
optical axis and pointing to the front of the camera.

Suppose the focal length is f and the image plane is
located at z= f with its coordinated axes X and Y
parallel to the axes X and ¥ of the camera coordinates,

respectively. Let us imagine that the coordinate system
O— Xyz is obtained by first rotating the coordinate

system O-UVW with rotation matrix R then translating

it with vector T .

Let us represent a 3D corner in the camera coordinate
system by the vertex and the edge directions of the
corner. Because all these are 3D vectors, a 3D corner can
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be represented by a 3x4 matrix. Let vector f)o denote
the 3D position of the vertex p, and 1, i=1,2,3, the

unit vectors along 3D directions of the edge lines I, of
the corner, then the representation of the 3D corner

po —LLL, is c=[p,|n |n,|n,]. Applying central
projection to the image, we can get 130 and ii,

(i=1,2and 3), the images of vertex p, and edge lines

1 ; of the corner respectively. Thus,

. B
B =(X,.Y,. = fL=(r2 2 ) (1)
Z

Z o Z

where (X,,Y;), the first two components of 130, are the
image coordinates of the vertex in the image coordinate
system O'— XY, and the third component is f;
(Xy,Y,»72,) is the coordinate of p, in the camera
coordinate system O — XyZ. Suppose the equation of the
image line L, in the image plane is

AX+BY+C,=0 2)
The equation of the projecting plane of edge line I ; in the

camera coordinate system is

Aix+B,.y+£fiz:0 3)
Therefore, we can use the image line parameters to
represent the normal vector N,- of the projecting plane of
the corresponding edge line

N Ci T
]\]i _(Ai’Biﬁ_f) (4)

In fact, since N,- is the normal of the projecting plane
of the edge line I, N,- is orthogonal to 7, and the vertex

vector f)o. The image corner can be represented by a

3x4 matrix: C=[P, | N,| N, | N,] in camera coordinate

system. Considering that the edge lines of a corner are
rays, we should put a constraint on the vector

N. = (A, B, Q)T to make the edge lines of an image
1 b 1° f

corner go in one direction, i.e., in the same direction with

the 3D edge lines.

To determine the directions of the edge lines for a 3D
orthogonal corner from a single view, in the projecting

plane of edge line I, i=1,2,3, make a ray I; start from
vertex p, and be perpendicular to f)o, such that
I = N, x P,. Suppose the angle between Z and T; is 0,,
and the angle between I:f and T; is @, 1#],
i, j =1,2,3. Obviously, we have

~ LI (NxB)(N;xR)

0S¢ = —=—= s
% [FINGT [Ny By || N; < F |

©)



In the case of orthogonal corner, the relationship
between 0, 0, and ¢; can be easily found (fig.2).

Imagine points ¢;, ¢, belongs to I, I; respectively,

and | pyq; |5l pyq, [=1; points q;, q'; belongs to I,
' . ' T ' T

I respectively, and q,q; LI}, q;q; LI}, where L

denotes echelon

4,994, we have
ror o2 2 ' rn2
19:q; 1= q:9; " —(19;9;1-19:9; D
=2—(sin9i—sin0j)2

“‘perpendicular to’’. Then, in

In triangle Aq; p,,q;, we have
|q;q’; =l pod} |” + Py g
=21pyq; I’ poq’; I’ cos g,
=(c0s0;)* +(cos0,)’

—2cos 6, cos0; cos;;

| 2

From equations (6) and (7), we can get:
tan0, tan6; +cos ¢; =0 (8)
So,
tan 6, tan6, +cos¢,, =0
tan 0, tan 0, +cos¢,, =0 9)
tan 6, tan 6, +cos ¢;, =0
Equations (2)—~(4) have a closed form solution

tan, = + | cos ¢, cos s,
cos¢,,

an, = - <%5%2 (10)
tan 6,

tan, = 50
tan 0,

From equations (5) and (10), 6,, 6, and 6, can be
solved. Then, the directions of the edge line I, of the 3D
corner can be viewed as a rotation of T; with an angle 9,

around axis N, , so 1, can be easily computed.

Equation (10) has two sets of solutions differing by a
sign. Geometrically, it means that one can usually find
two 3D orthogonal corners to fit one image corner. One
of the corners is the reflection of the other about the plane

which determined by 1:', 7; and 73' So, we should leave

out a set of solution according to the real scene.

e Camera Orientation
In order to represent the pose of the camera conveniently,
we fix the space coordinate system O-UVW on the

corner p, —I 1,1, with the origin at the vertex p, of the

3D corner and UVW-axes coincide with the edge lines
1,11, respectively. Suppose that the camera coordinate

system O— Xyz is obtained from the space coordinate
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system O-UVW by a rotation R followed by a
transaction 7. Obviously, R and T correspond to the
orientation matrix and location vector of camera pose
respectively. Therefore, we have

1 00
0 1 0|=R[#|f|f] (1)
0 01

Because the matrix [q, | i, | ii,] is orthogonal, it is easy

to see that
R:[I_1‘1|I_1‘2|ﬁ3]T (12)

e Camera Location

In the following we show that the camera location
(transaction) can be uniquely determined if an additional
image point not lying in the vertex of the corner is given.
This space point is called the nonsingular point of this
corner. Without loss of generality, suppose a known

space point p, lying in edge line I, and | p, p, |= d, the
image point of p, is P, which lying in image line L,.
The intersection between line 11’ and line op,(P) is pl' ,

see fig.1.
In Ap; p), p; » according to sine theorem we have

| popil d
sin(£p,p,p;) sin(Zop|p,)

Where £ denotes a corner. Obviously

n.P
e (14)
EXREL

P
RIS
From equations (13)—(15), we can get Zop'p, and

(13)

Zp,p,p' = cos

Zop'p, =cos™( ) (15)

| p, P! |- Then, substituting them into the following

equation

- ’ ’ ﬁ
Py = pop! | .(tan(op] p,) | 'ITOI (16)
0

we can get P, in camera coordinate system, thus
0

transaction T can be determined by
Rp,+T=0 (17)
Therefore, in this subsection, a closed form solution of

the camera pose is obtained when a 3D orthogonal corner
is observed.

3. Collinearity theory

Given a set of 3D-2D  correspondences
(pi=(x,¥,2)",P'=(X.Y)") (i=12,..,n|n23)
between a 3Dscene and its 2D projective image, the
relationship between the 3D-2D correspondences
(p,,P)) can then be represented [8], without loss of

generality, as
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I)i'
Z;[lJ:RpiH (18)

where the standard pinhole camera model is adopted

assuming that the focal length of the camera is equal to 1
for computational convenience, R and t represent the
orientation and position of the camera respectively in the

scene centered coordinate frame, and Z: represents the

depth of point p, in the camera centered coordinate

frame.
Given any two 3D-2D correspondences (p,,P) and

(p,,P)), we have from equation (18):

X X
72| Y =R y |+t (19)
1 2
and
X X,
Z; YZ =Ry, |+t (20)
1 z

Taking equation (19) away from equation (20) gives

X X;
2| Y |=2| ¥, |=R(p - p,) (21)

1 1

Expanding this equation leads to
Z{X{_Z;X{:K(pl_pz) (22)
2Y = 24Y = R,(p — p,) (23)
and

7 -2, =R(p,—p,) (24)

where R, R,, and R, are the rows of rotation matrix
R . Equation (24) is equivalent to
7z =R(p—-p,)+7 (25)
Substituting equation (24) into equations (22) and
(23) results in

Z(X; - X))+ X{R,(p, — p,) = R,(p, — p,) (26)
and
Z(Y, - Y)+ YR (p, - p,)= R, (p, — p,) (27)
Eliminating 7, from these two equations yields:
v 1;1 Epl - pzi '
2 T N 5(P — P,

= 28
Y;—Yr R2(p1_p2)_ ( )

Ry(p, - p,) ]

p2

Image plane

Fig.3: The collinearity constraint: image P, and P, and the
projection P, of their correspondence rotated point
difference R(p, — p,) on the image plane are collinear.
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This equation defines a collinearity constraint, as it
shows that distinct image points P', P/, and

T

(R,(p] -p) R(p, —mj are collinear (Fig.3). This
RS(p] _p2) R3(p1 _p2)

constraint says that the projection of the rotated

difference R(p; — p;) of any two 3D points p; and
p; on the image plane must lie on the line connecting
their corresponding image points P’ and P; in the
image plane. Thus, for any two 3D-2D correspondences
(p;»P) and (p,,P) (i,j=12,.,n]i# j) we have a
constraint similar to equation (26). For a number n of

3D-2D correspondences, we will have (2 _n@-1
n 2

such constraints. With the number n of 3D-2D
correspondences increasing, the number of such
constraints will geometrically increase as O(n*). All

these lines are mutually interconnected in the image plane
and thus, in the general case, it is virtually impossible for
different images to have the same mutually
interconnected structure, enabling model based object
recognition from its projective image.

4. Iterative geometrical noise cancellation

The error of transaction matrix, which has a more ration
in pose estimation error, is arias more from the error of
landmarks length (d). Additionally, in one hand, the
corners that are detected by Harris corner detector [1] on
the image plane appears from the system nature that
means that they do not calculated from camera intrinsic
and extrinsic parameters; they are the image of real
corners of landmarks in O-UVW space to O— XY
space. In other hand, collinearity theory exposes a simple
mapping between O-UVW and O0— Xyz for some
special points.

We could calculate the co-linear point, based on the
image of two neighborhood corners like p, and p, on
the image plane and then transformed it to the O—-UVW

space by using extrinsic camera parameters. We know
that

Xl. ll,
vi|l=R v |+T (29)
Z; | Wi
So,
i X;
vi =R |y |-T (30)
i Z;
That means:
u, =Ry 'x,+ R, v, + Rz - Rt - Rt - R't, (31)
V=R x + R,y + Ryz, — Rt — Rt — R;jt, (32)

W =R 'x, + Ry, + Rz — R/t - Rt —Rjt, (33)

32y
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Hence, the image of co-linear point on O—-UVW space
can be calculated as bellow:

u-—u = RIT X +Rl;Yl +R1;lzl
_R1711 X +R1;l Y2 +R1;l Z,
= RI;I(XI _X2)+R1;l(YI _YZ)"'RS(Zl -z)
=V, = R;11X1 +R£Yl +R;3IZI

(34)

_Rgll X, +R;21 Y2 +R;3l 2 (35)
= R;II(XI _X2)+R;21()ﬁ _YZ)+R;31 (z - 2z,)
Wi—w, = R;11X1 +R;ZIYI +R;3IZI
_R;ll X,
= R;II(XI _X2)+R;21(Y1 _YZ)+R;31(ZI -2)
By substituting the coordinate of P, and P, (the image

+R, vy, + R 7, (36)

of p, and p, correspondingly on the image plane) we
have:

R171] (X] - X2) + R]EI (Y]. - Y].)

Pr— D= R;]](X] - X))+ R;;(X_ Y)

Ry (X, = X,)+ R, (Y - Y)

As the image of co-linear point on O—UVW space

G37)

respondent to the collinearity theory is p, — p, and we
know that

d= \/(pl - p2)2 :\/(ul - u2)2 +(v - V2)2 +(w - W2)2 (38)
So, we could calculate d’ (the estimation of d which is

pre-given in calculating T ) from co-liner point. Anyway
because of CCD digitization d and d’ may not be equal
and have a little differences.

If d and d' had a poor differences, we could
concluded that, the pre-given d is accurate enough, and
so, the accuracy of the camera transaction parameter (T)
is admissible; else the pre-given d is not accurate and
should be corrected in the way that the differences
between d and d’ becomes poor. To this end, we can

define the bellow function to find the real and original d
by some common method like downhill simplex search,
which finally leads to the accurate T .

|F-d|=0 (39)
It should be noted that, F is the process of calculating
d' by using collinearity theory and camera extrinsic
parameters.

5. Simulation results

Now we are going to study and analyze the effective
parameters on camera poses estimation process for virtual
studio through computer simulation situation using single
landmark. To this end a 3D calibration rig, which is
shown in Fig.4(a), is employed. Fig.4(b) shows the
corners which are detected by Harris corner detector [1]
as features points. From these feature points and by using
an extra nonsingular point of the edge line of the
landmark’s corner, we can extract camera extrinsic
parameters, which are camera position and its orientation.
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We studied effective parameters on camera pose
estimation process independently through computer
simulation. The simulation results after 1000 iteration are
summarized in the following tables.

(a)

Fig.4: (a) 3D calibration rig. (b) Corners detected using
Harris corner detector

Table 1 studies the error appears through changing
CCD resolution. Table 2 shows the estimation’s errors by
adding some Gaussian noise to the landmark’s length.
Table 3 reports the rotation and translation RMS causes
from adding Gaussian noise landmark’s angles (B) for
100 iterations. It should be noted that when some noises
from some sources like cubic manufacturing errors
change parameter B from its original value, which is 90
degree, then Equation (40) is no longer valid. So we need

to calculate @, from different equations as mentioned in

[2, 3] which are summarized as bellow:
tan 0, tan 6, +cos ¢,, =

cos [31.\/(1+tan2 0,)(1+tan’ 6,)

tan 0, tan 0, +cos ¢,, =

c0s B, +/(1+tan> 0, )(1+tan’ 0,)

tan 6, tan 0, +cos §;, =

cos [33.\/(1+tan2 0;)(1+tan” 0,)

We solve Equation set (40) by Genetic Algorithm (GA).
We reported the solution error in Table 3. Additionally
we calculate the RMS of camera pan, tilt and roll motions
which are reported in Table 3 too. Table 4 shows the
camera pose estimation’s errors when some Gaussian
noise presented in camera focal length. And finally Table
5 studies the camera rotation and translation RMS causes
from adding Gaussian noise to landmarks coordination. It
should be noted that all of the wvalues studied in
mentioned tables are set or measured in millimeter.

(40)

Table 1 Camera rotation and translation RMS causes from
changing resolution.

Resolution L
Rotation (deg) Translation (mm)
640x480 1.40e-06 0.012619
800x600 1.13e-06 0.004790
1024x768 6.37e-07 0.010955
12801024 6.90e-08 0.001731
16001200 6.89%¢-07 0.005727
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Table 2 Camera rotation and translation RMS causes from
adding Gaussian noise to landmark’s length.
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Gaussian Noise RMS
1] G Rotation (deg) Translation (mm)
0 0.25 0 0.028645
0 0.5 0 0.056275
0 0.75 0 0.085479
0 1 0 0.113160
0 1.25 0 0.143300
0 1.5 0 0.167350
0 1.75 0 0.196430
0 2 0 0.226360

Table 3 Camera rotation and translation RMS causes from
adding Gaussian noise landmark’s angles () for 100

iterations.
Gaussian Noise RMS

o n GA Translation Reotation

(mm) (deg)
0.25 0 8.51e-04 0.3365 3.44¢-05

0.5 0 7.38e-04 190.4391 0.0038
0.75 0 1.0172 8.18e-04 9.93e-05
1 0 8.45e-04 1.9106 1.82e-04
1.25 0 8.18e-04 2.2612 2.15e-04

1.5 0 8.34e-04 186.5566 0.0039
1.75 0 7.48e-04 192.3898 6.06e-38
2 0 7.97e-04 3.6022 3.51e-04

Table 4 Camera rotation and translation RMS when some
Gaussian noise presented in camera focal length.

Gaussian Noise RMS
R c Rotation (deg) Trezrrls::)n on
0 0.0001 0 0.0058
0 0.00025 0 0.0146
0 0.0005 0 0.0277
0 0.00075 0 0.0383
0 0.001 0 0.0561
0 0.0025 0 0.1318
0 0.005 0 0.2758
0 0.0075 0 0.3938

By studying Tables 1 — 4 we can draw the following
outcomes: in Table 1 by increasing the CCD resolution,
RMS of estimation decreases, in Table 2 and 3 shows that
noise in landmarks’ length and angles affect translation
matrix more than rotation matrix, in Table 4, it is
observable that adding some Gaussian noise to the
camera focal length may affect translation matrix more
than rotation matrix; i.e. the camera translation matrix is
infected more than other camera extrinsic parameters by
the noise of effective pose estimation parameters. We can
reduce the estimation error by wusing our noise
cancellation algorithm.

Fig.8 shows the convergence of iterative noise
cancellation algorithm for a pre-given landmark’s length
equal to 300 mm. As this figure shows, the algorithm is
converged to 301.14 mm, which is the true value of

L
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landmark’s length. In real condition, as other parameters
like CCD resolution affects the global minimum of
Equation (39), noise cancellation algorithm may converge
to the different value instead of true value of landmark’s
length. But, fortunately the primitive steps of the
convergence are similar (see Fig.9), so by limiting the
maximum iterative, we may found some values near to
the true value that leads to the better estimation of
translation matrix.

2 T H i F

= o i
B 3015 Hflee s Bessasssnnbonn 4

= - :

w H H

a0 : H
= MWW i : :
E LY 1 R S TG o 1
= ! : : !
0 100 180 20
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Fig8 Noise cancellation algorithm that is converging to
the true value of landmark’s length
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ama True values | Do
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5 ] : : ! :
2 : : .
.11 -] EELREREER P
300 :
o 200

iteration
Fig. 9 Noise cancellation algorithm that is converging to
the true value of landmark’s length (resolution: 800%600)

Fig.10 shows the absolute error of pose estimation
process for 100 sampled camera positions, while the
camera is moving on a circular trajectory around the
landmark by radius equal 2.3 meter. Meanwhile, Table 5
summarizes the RMS, minimum and maximum absolute
error of the simulation results while using mentioned
trajectory. Table 6 shows more details on a position
which causes the biggest error in our simulation, while
comparing it with the values obtained without noise
cancellation algorithm. It is observable that employing
noise cancellation algorithm increases the accuracies of
results.

Table S Minimum, maximum, and RMS of pose estimation
error (resolution: 800x600)
X (mm) y (mm) z (mm) Pan
(deg)

Tilt
(deg)

Roll
(deg)

Min | 6.7le-1 6.69¢-1 2.04e-1 9.73e-4 2.73e¢-3 0 00e-0
MAX| 2.75¢-0 2.15¢-0 2.51 -0 3.28e-2 3.58¢-2 4.00e-6
RMS | 1.55e-0 1.23e-0 1.33e-0 1.43e-2 1.71e-2 2.16e-6
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Fig.10 Pose estimation absolute error - (resolution:
800%600). (a) Absolute error of translation parameters. (b)
Absolute error of orientation parameters.

Table 6 Efficiency of iterative geometrical noise cancellation

algorithm
Without Noise Using Noise
True Values Cancellation Cancellation
Algorithm Algorithm

Translation
(mm)
Rotation
(deg)
Translation
(mm)
Rotation
(deg)
Translation
(mm)
Rotation
(deg)

X pan X pan X pan
-309.582 4.4392 -320.376 4.2886 -311.492 4.2886
y tilt y tilt y tilt
-135.864 36.2833 -142.768 34.7044 -138.81 34.7044
z roll z roll z roll

-336.542 0.0114 -352.988 0.0114 -342.627 0.0114

6. Conclusions

This paper studies a closed-form camera pose estimation
algorithm with a new iterative geometrical noise
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cancellation approach for a virtual studio landmark based
single camera system by using 2D-3D corner
correspondence. The pose estimation algorithm includes
two main units: Feature Extraction, and Pose Estimation
unit. The first unit tries to extract the pattern corners of
cube like landmark by employing Harris corner detector.
Then by using these points, we try to driving the unit
vectors along 3D directions of the edge lines of the
Landmark’s corner for pose estimation unit. By using
these feature points and employing nonsingular point of
this corner, the second unit tries to accurately determine
camera position and orientation parameters. Our
simulation shows that this method is efficient and
accurate. But camera transaction matrix is too sensitive to
noise. In fact it may be infected by noise more than other
camera extrinsic parameters. So, we have developed an
iterative geometrical noise cancellation to restore
accurate camera transaction matrix. To this end, as the
ration of landmark length is more than other given
parameters in estimating camera transaction matrix, we
recalculate the length of the landmark based on the
collinearity theory and camera rotation parameters and
then compare it with the given one. If these two are the
same, we will conclude that the given landmark length
parameter is accurate enough, so the camera transaction
matrix is right; else we will make some small changes in
landmark given length by non-derivative based methods
like downhill simplex search and assume it as a new
given landmark length parameter to recalculate camera
transaction matrix. This process will be repeated again
and again until the difference between given landmark
length and recalculated one become poor. It should be
noted that this deference because some other properties of
camera system like CCD digitization may not be zero. To
validate our new method, we test through computer
simulation. The results show that it is efficient, accurate
and robustness. But the drawback is that the camera
rotation matrix may not always be inverseable.
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