# THE DETERMINATION OF THE RESONANCE FREQUENCY OF THE TE ${ }_{111}{ }_{11}$ MODE IN A RECTANGULAR DIELECTRIC RESONATOR FOR ANTENNA APPLICATION 

M. H. Neshati and Z. Wu<br>Electrical \& Electronics Engineering Dept., UMIST, Manchester M60 1QD, UK.<br>Emails: neshat@ieee.org, z.wu@umist.ac.uk


#### Abstract

In this study the conventional dielectric waveguide model (CDWM) is used to determine the resonance frequency of a rectangular dielectric resonator operating at the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode for antenna application. A fitted closed form formula is obtained for the prediction of the resonance frequency. The results obtained are compared with the experimental results and that determined using the Marcatili and EDC methods. The formula provides a simple method for the estimation of the resonance frequency of the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode with an error ranging from $-9.3 \%$ to $+2.05 \%$ for $\varepsilon_{\mathrm{r}}<100$.


Dielectric Resonators (DRs) in cylindrical, rectangular and other geometries positioned on the top of a ground plane could operate as an efficient antenna [1,2]. Several methods have been proposed to predict the resonance frequency of a dielectric resonator antenna (DRA) [3-8], including the closed cavity model [3], the effective dielectric constant (EDC) model [7,9], the modified wave guide model (MWGM) [8] and the conventional dielectric waveguide model CDWM [10].

In this paper the conventional dielectric waveguide model (CDWM) is used to determine the resonance frequency of a rectangular dielectric resonator operating at the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode for antenna application. A fitted closed form formula is obtained for the prediction of the resonance frequency. The results obtained are compared with the experimental results and that determined using the Marcatili and EDC methods. The formula provides a simple method for the estimation of the resonance frequency of the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode with an error ranging from $-9.3 \%$ to $+2.05 \%$ for $\varepsilon_{\mathrm{r}}<100$.

## The Conventional Dielectric Waveguide Model Approximation

The RDRA under consideration is shown in Figure 1a. The resonator is located on a large ground plane. The dimensions of the resonator are $\mathrm{a}, \mathrm{b}, \mathrm{h}$ in $\mathrm{x}, \mathrm{y}$
and z directions respectively and the DR has a relative dielectric constant of $\varepsilon_{\mathrm{r}}$. The width and height aspect ratios are defined as $\mathrm{p}=(\mathrm{b} / \mathrm{a})$ and $\mathrm{q}=(2 \mathrm{~h} / \mathrm{a})$ respectively. The DR is excited by a probe on the x -axis at $\mathrm{x}=\mathrm{a} / 2$. Assuming the ground plane is infinitely large, image theory can be applied equivalently to replace the resonator by an isolated DR , as shown in b . The equivalent resonator has twice the height of the original resonator.


Figure 1. A rectangular dielectric resonator antenna a) on a ground plane excited by a probe and b) its equivalent isolated resonator

The field components of the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode inside the resonator can be obtained to be [10 ]:
$E_{x}=-\left(A / \varepsilon_{d}\right) k_{z} \cos \left(k_{x} x\right) \cos \left(k_{y} y\right) \sin \left(k_{z} z\right)$
$E_{y}=0$
$E_{z}=\left(A / \varepsilon_{d}\right) k_{x} \sin \left(k_{x} x\right) \cos \left(k_{y} y\right) \cos \left(k_{z} z\right)$
$H_{x}=\left(A / j \omega \mu_{0} \varepsilon_{d}\right)\left(k_{x} k_{y}\right) \sin \left(k_{x} x\right) \sin \left(k_{y} y\right) \cos \left(k_{z} z\right)$
$H_{y}=\left(A / j \omega \mu_{0} \varepsilon_{d}\right)\left(k_{x}^{2}+k_{z}^{2}\right) \cos \left(k_{x} x\right) \cos \left(k_{y} y\right) \cos \left(k_{z} z\right)$
$H_{z}=\left(A / j \omega \mu_{0} \varepsilon_{d}\right)\left(k_{y} k_{z}\right) \cos \left(k_{x} x\right) \sin \left(k_{y} y\right) \sin \left(k_{z} z\right)$
where $\varepsilon_{\mathrm{d}}\left(\varepsilon_{d}=\varepsilon_{r} \varepsilon_{0}\right)$ is the dielectric constant of the resonator, and $\mathrm{k}_{\mathrm{x}}, \mathrm{k}_{\mathrm{y}}$ and $\mathrm{k}_{\mathrm{z}}$ are the wavenumbers in $\mathrm{x}, \mathrm{y}$ and z directions respectively which can be determined from the boundary conditions. In the analysis of the CDWM, the boundary conditions consist of four perfect magnetic walls at $x= \pm a / 2$, $\mathrm{z}= \pm \mathrm{h}$ surfaces and the continuous tangential fields at $y= \pm b / 2$ surfaces. The characteristic equations for the wavenumbers are [10]:

$$
\begin{aligned}
& k_{x}=(\pi / a), \quad k_{y} \tan \left(k_{y} b / 2\right)=\sqrt{k_{x}^{2}+k_{z}^{2}-k_{0}^{2}}, \\
& k_{z}=(\pi / 2 h)
\end{aligned}
$$

and the wave numbers satisfy the separation equation given by:

$$
k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=k_{0}^{2} \varepsilon_{r}
$$

where $k_{0}=2 \pi f_{0} / c$ and $\mathrm{c}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light in free space. Based on this approximation, the variation of fields in x or z direction is a complete half cycle, and a fraction of a half cycle in $y$ direction with a fraction $\delta_{\text {CDwM }}$ defined as:

$$
k_{y}=\delta_{C D W M} \pi / b
$$

Hence, the resonance frequency can be obtained as:

$$
f_{0}=\frac{c}{2 a \sqrt{\varepsilon_{r}}} \sqrt{1+q^{-2}+p^{-2} \delta_{C D W M}^{2}}
$$

In general, $\delta_{\text {CDWM }}$ is a function of the dielectric constant and aspect ratios p and q. For the width aspect ratio $\mathrm{p}=1$, the variations of $\delta_{\mathrm{CDWM}}$ for three typical values of relative dielectric constant $\varepsilon_{\mathrm{r}}$ are shown in
a. It can be seen that $\delta_{\text {CDWM }}$ has a weak dependence on the dielectric constant for a given value of q , especially for $\varepsilon_{\mathrm{r}}>30$, which is used in most antenna applications. By choosing the average of the values for $\varepsilon_{\mathrm{r}}=38$ and 100 , the numerical values could be fitted to a closed form formula, which has an exponential dependence of $q$ given by:

$$
\delta_{C D W M}=0.652+0.286 \exp (-1.937 q+0.198)
$$

Similarly, for other values of $p$, the numerical values of $\delta_{\text {CDWM }}$ can be fitted in closed form formulas with different coefficients. By fitting the coefficients as a function of $p$, a generalised closed form formula can be obtained for $0.5<p<2.0$ and $q<2.0$ as,

$$
\begin{aligned}
& \delta_{C D W M}=\left(0.35+0.38 p-0.078 p^{2}\right)+(0.41-0.11 p) \\
& \times \exp \left(-\frac{q-0.09-0.01 p}{0.31+0.26 p-0.06 p^{2}}\right)
\end{aligned}
$$

The dependence $\delta_{\text {CDWM }}$ on q for various values of $p$ is shown in
b. Upon obtaining $\delta_{\mathrm{CDWM}}$, the resonance frequency could be obtained using equation (4).

(a) Height aspect ratio $\mathrm{q}=(2 \mathrm{~h} / \mathrm{a})$

(b) Height aspect ratio $\mathrm{q}=(2 \mathrm{~h} / \mathrm{a})$

Figure 2. Variation of the cycle ratio versus height aspect ratio $\mathrm{q}:$ a) for three value of $\varepsilon_{r}$ and $p=l$ and b) variation of cycle ratio for different value of $p$.

## Results and Discussion

For a number of DRs with different dielectric constant and physical dimensions, the determined
frequencies using equation (4) are tabulated in Table 1 together with the experimental results obtained independently or from [8] or [9], and with the results determined using the Marcatili method [11], and the EDC method [12]. The errors of prediction for different methods with respect to the measured resonance frequency are also listed in the table. It can be seen that the fitted equation, i.e. equation (4), generally gives a better prediction of the resonance frequency of the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode in a rectangular DR , with an error of prediction ranges from $-9.3 \%$ to +2.05\%.

## Conclusions

In this paper, it has been shown that the CDWM can provide a better prediction of the resonance frequency of the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode of a rectangular DRA than the Marcatili and EDC method. Based on the CDWM, a fitted closed form formula has been obtained for the calculation of the resonance frequency of a RDRA with $\varepsilon_{\mathrm{r}}>30,0.5<\mathrm{p}<2.0$ and $0.2<\mathrm{q}<2$. The formula provides a simple method for the estimation of the resonance frequency of the $\mathrm{TE}^{\mathrm{y}}{ }_{111}$ mode with an error ranging from $-9.3 \%$ to $+2.05 \%$ for $\varepsilon_{\mathrm{r}}<100$.

## Acknowledgements

Mr Neshati would like to thank the Ministry of Science, Research \& Technology and Sistan \& Baluchetan University of the Islamic Republic of Iran.

## Refrences:

1. McAllister M. W., Long S. A. and Conway G. L., "Rectangular Dielectric Resonator Antenna", Electronics Letters, 1983, Vol. 19, pp. 218-219.
2. Drossos, G., Wu, Z. and Davis, L.E., "Cylindrical dielectric resonator antennas: theoretical modeling and experiments", Microwave \& Communication Technologies Conference M\&RF'97, Wembley Conference Centre, 1997, London, UK.
3. Kajfez D. and Guillon, P., "Dielectric Resonators", Artech House, Norwood, MA, 1986
4. Glisson A.W., Kajfez D., and James J., "Evaluation of Modes in Dielectric Resonators Using a Surface Integral Equation Formulation,"

IEEE Trans. Microwave Theory \& Tech.. 1993, Vol. 31, pp. 1023-1029.
5. Kishk A.A., Zunoubi M.R. and Kajfez, D., "A Numerical Study of a Dielectric Disk Antenna Above Grounded Dielectric Substrate", IEEE Trans. Antennas Propagation, 1993, Vol. 41, pp. 813-821.
6. Geyi W. and Honghhi, W., "Solution of the Resonant Frequencies of a Microwave Dielectric Resonator Using Boundary Element Method", Proceedings Int. Elect. Eng., 1988, Vol. 135, Pt. H, pp. 333-338.
7. Mongia R. K. and Bhat, B., "Effective Dielectric Constant Technique to Analyse Cylindrical Dielectric Resonators", Arch. Elek., Ubertragung, 1987, Vol.AEU-38, pp. 161-168
8. Antar Y. M. M., Cheng D., Seguin G., Henry B. and Keller, M., "Modified Wave Guide Model (MWGM) for Rectangular Dielectric Resonator Antenna", Microwave \& Optical Technology Letters, 1998, Vol. 19, pp. 158-160.
9. Mongia R. K. "Theoretical and Experimental Resonant Frequencies of Rectangular Dielectric Resonator", IEE Proceeding -H, 1992, Vol. 139, pp. 98-104.
10. Mongia R. K. and Ittipiboon A., "Theoretical and Experimental Investigations on Rectangular Dielectric Resonator Antennas", IEEE Transactions on Antenna and Propagation, 1997, Vol. AP-45, pp. 1348-1356
11. Marcatili E. A. J., "Dielectric Rectangular Waveguide and Directional Coupler for Integrated Optics," The Bell System Technical Journal, vol. Sept. 1969, pp. 2071-2102, 1969.
12. Knox R. M. and Toulios P. P., "Integrated Circuits for the Millimetre through Optical Frequency Range." Symposium on Sub-millimetre Waves, Polytechnic Institute of Brooklyn, 1970, pp.497-515.

Table 1. Theoretical and measured resonance frequency of the RDRAs operating at the fundamental TE ${ }^{y} \underline{111}$ mode.

| $\varepsilon_{\mathrm{r}}$ | a <br> $(\mathrm{mm})$ | b <br> $(\mathrm{mm})$ | h <br> $(\mathrm{mm})$ | Measured <br> $\mathbf{f}_{0}$ <br> $(\mathrm{GHz})$ | CDWM <br> $\mathrm{F}_{0} /$ error $(\%)$ <br> $(\mathrm{GHz})$ | Marcatili[11] <br> $\mathbf{f}_{0} /$ error $\%$ <br> $(\mathrm{GHz})$ | EDC [12] <br> $\mathbf{f}_{0} /$ error $(\%)$ <br> $(\mathrm{GHz})$ | Ref. |
| :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| 37.1 | 6 | 4 | 3 | 7.27 | $6.99 /-3.8$ | $6.89 /-5.2$ | $6.86 /-5.6$ | $[9]$ |
| 37.1 | 6 | 3 | 3 | 7.91 | $7.56 /-4.4$ | $7.34 /-7.2$ | $7.33 /-7.3$ | $[9]$ |
| 37.84 | 8.77 | 8.77 | 3.5 | 5.34 | $4.89 /-8.4$ | $4.80 /-10.1$ | $4.65 /-13$ | $[8]$ |
| 37.84 | 9.31 | 9.31 | 4.6 | 4.59 | $4.16 /-9.3$ | $4.08 /-11.1$ | $4.05 /-11.7$ | $[8]$ |
| 37.84 | 8.6 | 2.58 | 8.6 | 5.34 | $5.45 / 2.05$ | $4.26 /-20$ | $4.06 /-24$ | $[8]$ |
| 37.84 | 8.77 | 3.51 | 8.6 | 4.79 | $4.68 /-2.2$ | $4.02 /-16$ | $3.89 /-18.7$ | $[8]$ |
| 37.84 | 9.31 | 4.6 | 9.2 | 4.11 | $4.06 /-1.2$ | $3.76 /-8.5$ | $3.64 /-11.4$ | $[8]$ |
| 79.46 | 12.7 | 12.7 | 6.35 | 2.64 | $2.49 /-5.6$ | $2.10 /-20$ | $2.07 /-21.6$ | $[9]$ |
| 100 | 10 | 10 | 2 | 4.57 | $4.22 /-7.6$ | $4.17 /-8.8$ | $4.15 /-9.2$ | $[8]$ |
| 100 | 10 | 10 | 1 | 7.97 | $7.76 /-2.6$ | $7.58 /-4.9$ | $7.46 /-6.4$ | $[8]$ |
| 100 | 12.7 | 12.7 | 1 | 7.72 | $7.67 /-0.6$ | $7.42 /-3.9$ | $7.23 /-6.3$ | $[8]$ |
| 100 | 5 | 10 | 1 | 8.85 | $8.19 /-7.4$ | $8.08 /-9.0$ | $8.06 /-9.1$ | $[8]$ |
| 100 | 10 | 5 | 1 | 8.5 | $8.03 /-5.5$ | $7.89 /-7.1$ | $7.65 /-10$ | $[8]$ |
| 38 | 19 | 19 | 9.5 | 2.20 | $2.02 /-8.1$ | $1.99 /-9.5$ | $1.97 /-10.4$ | Exp. ${ }^{*}$ |
| 37 | 18 | 18 | 9 | 2.34 | $2.16 /-7.7$ | $2.12 /-9.4$ | $2.11 /-9.8$ | Exp. |

*: Experimental value obtained by the authors.

