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Abstract 

 

In this study the conventional dielectric waveguide 

model (CDWM) is used to determine the resonance 

frequency of a rectangular dielectric resonator 

operating at the TE
y
111 mode for antenna application. 

A fitted closed form formula is obtained for the 

prediction of the resonance frequency. The results 

obtained are compared with the experimental results 

and that determined using the Marcatili and EDC 

methods. The formula provides a simple method for 

the estimation of the resonance frequency of the 

TE
y
111 mode with an error ranging from –9.3% to 

+2.05% for r<100. 

 

Dielectric Resonators (DRs) in cylindrical, 

rectangular and other geometries positioned on the 

top of a ground plane could operate as an efficient 

antenna [1,2]. Several methods have been proposed 

to predict the resonance frequency of a dielectric 

resonator antenna (DRA) [3-8], including the closed 

cavity model [3], the effective dielectric constant 

(EDC) model [7,9], the modified wave guide model 

(MWGM) [8] and the conventional dielectric 

waveguide model CDWM [10].  

 

In this paper the conventional dielectric waveguide 

model (CDWM) is used to determine the resonance 

frequency of a rectangular dielectric resonator 

operating at the TE
y
111 mode for antenna application. 

A fitted closed form formula is obtained for the 

prediction of the resonance frequency. The results 

obtained are compared with the experimental results 

and that determined using the Marcatili and EDC 

methods. The formula provides a simple method for 

the estimation of the resonance frequency of the 

TE
y
111 mode with an error ranging from –9.3% to 

+2.05% for r<100.   

 

 

The Conventional Dielectric Waveguide Model 

Approximation 

 

The RDRA under consideration is shown in Figure 

1a. The resonator is located on a large ground plane. 

The dimensions of the resonator are a, b, h in x, y 

and z directions respectively and the DR has a 

relative dielectric constant of r. The width and 

height aspect ratios are defined as p=(b/a) and 

q=(2h/a) respectively. The DR is excited by a probe 

on the x-axis at x=a/2. Assuming the ground plane 

is infinitely large, image theory can be applied 

equivalently to replace the resonator by an isolated 

DR, as shown in b. The equivalent resonator has 

twice the height of the original resonator.  
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Figure 1.  A rectangular dielectric resonator antenna 

a) on a ground plane excited by a probe and b) its 

equivalent isolated resonator 

 

The field components of the TE
y
111mode inside the 

resonator can be obtained to be [10 ]: 
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where d ( 0rd
 ) is the dielectric constant of the 

resonator, and kx, ky and kz are the wavenumbers in 

x, y and z directions respectively which can be 

determined from the boundary conditions. In the 

analysis of the CDWM, the boundary conditions 

consist of four perfect magnetic walls at x=a/2, 

z=h surfaces and the continuous tangential fields at 

y=b/2 surfaces. The characteristic equations for the 

wavenumbers are [10]: 
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and the wave numbers satisfy the separation 

equation given by:  
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where cfk /2 00   and c=310
8
 m/s is the speed of 

light in free space. Based on this approximation, the 

variation of fields in x or z direction is a complete 

half cycle, and a fraction of a half cycle in y 

direction with a fraction CDWM defined as: 
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Hence, the resonance frequency can be obtained as:  
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In general, CDWMis a function of the dielectric 

constant and aspect ratios p and q. For the width 

aspect ratio p=1, the variations of CDWM for three 

typical values of relative dielectric constant r are 

shown in  

a.  It can be seen that CDWM has a weak dependence 

on the dielectric constant for a given value of q, 

especially for r>30, which is used in most antenna 

applications. By choosing the average of the values 

for rand100, the numerical values could be 

fitted to a closed form formula, which has an 

exponential dependence of q given by:   
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Similarly, for other values of p, the numerical values 

of CDWM can be fitted in closed form formulas with 

different coefficients. By fitting the coefficients as a 

function of p, a generalised closed form formula can 

be obtained for 0.5<p<2.0 and q<2.0 as, 
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The dependence CDWM on q for various values of p 

is shown in  

b. Upon obtaining CDWM, the resonance frequency 

could be obtained using equation (4).  
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Figure 2. Variation of the cycle ratio versus height 

aspect ratio q:  a) for three value of randp=1and 

bvariation of cycle ratio for different value of p. 

 

 

Results and Discussion 

 

For a number of DRs with different dielectric 

constant and physical dimensions, the determined 
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frequencies using equation (4) are tabulated in Table 

1 together with the experimental results obtained 

independently or from [8] or [9], and with the 

results determined using the Marcatili method [11], 

and the EDC method [12].  The errors of prediction 

for different methods with respect to the measured 

resonance frequency are also listed in the table. It 

can be seen that the fitted equation, i.e. equation (4), 

generally gives a better prediction of the resonance 

frequency of the TE
y
111 mode in a rectangular DR, 

with an error of prediction ranges from –9.3% to 

+2.05%.  

 

Conclusions 

 

In this paper, it has been shown that the CDWM can 

provide a better prediction of  the resonance 

frequency of the TE
y
111 mode of a rectangular DRA 

than the Marcatili and EDC method. Based on the 

CDWM, a fitted closed form formula has been 

obtained for the calculation of the resonance 

frequency of a RDRA with r>30, 0.5<p<2.0 and 

0.2<q<2. The formula provides a simple method for 

the estimation of the resonance frequency of the 

TE
y
111 mode with an error ranging from –9.3% to 

+2.05% for r<100.   
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Table 1.  Theoretical and measured resonance frequency of the  RDRAs operating at the fundamental TE
y
111 

mode. 

 

r a  

(mm)  

b 

(mm) 

h 

(mm) 

Measured  

f0 

(GHz) 

CDWM  

F0 /error(%) 

(GHz) 

Marcatili[11] 

f0 /error% 

(GHz) 

EDC [12] 

f0 /error (%) 

(GHz) 

Ref. 

37.1 6 4 3 7.27 6.99/-3.8 6.89/-5.2 6.86/-5.6 [9] 

37.1 6 3 3 7.91 7.56/-4.4 7.34/-7.2 7.33/-7.3 [9] 

37.84 8.77 8.77 3.5 5.34 4.89/-8.4 4.80/-10.1 4.65/-13 [8] 

37.84 9.31 9.31 4.6 4.59 4.16/-9.3 4.08/-11.1 4.05/-11.7 [8] 

37.84 8.6 2.58 8.6 5.34 5.45/2.05 4.26/-20 4.06/-24 [8] 

37.84 8.77 3.51 8.6 4.79 4.68/-2.2 4.02/-16 3.89/-18.7 [8] 

37.84 9.31 4.6 9.2 4.11 4.06/-1.2 3.76/-8.5 3.64/-11.4 [8] 

79.46 12.7 12.7 6.35 2.64 2.49/-5.6 2.10/-20 2.07/-21.6 [9] 

100 10 10 2 4.57 4.22/-7.6 4.17/-8.8 4.15/-9.2 [8] 

100 10 10 1 7.97 7.76/-2.6 7.58/-4.9 7.46/-6.4 [8] 

100 12.7 12.7 1 7.72 7.67/-0.6 7.42/-3.9 7.23/-6.3 [8] 

100 5 10 1 8.85 8.19/-7.4 8.08/-9.0 8.06/-9.1 [8] 

100 10 5 1 8.5 8.03/-5.5 7.89/-7.1 7.65/-10 [8] 

38 19 19 9.5 2.20 2.02/-8.1 1.99/-9.5 1.97/-10.4 Exp.
* 

37 18 18 9 2.34 2.16/-7.7 2.12/-9.4 2.11/-9.8 Exp.
* 

*: Experimental value obtained by the authors. 


