RDRA

Theoretical \& Experimental

 InvestigationM. H. Neshati
Z. Wu

Sistan \& Baluchistan Univ. Zahedan, Iran.

University of Manchester Institute of Science \& Tech., Manchester, UK.

Antenna Structure

Abstract:

Input Impedance of an RDRA Operated at TE ${ }_{111}$ Mode is Studied Numerically and Experimentally
Antenna is Simulated Using HFSS
The effects of Probe Length and Gap between Probe and Resonator on the input Impedance are Investigated

A few Experimental set-ups were examined and the Antenna Parameters were measured Results show Good agreement between Theory and Experiments

Numerical Results:

(b) Normalised probe length(L/h)

Simulated Results of Input Impedance of RDRA

Measured Results:

Experimental Results of the Input Impedanc of RDRA

Input Reflection Coefficient (1):

a) $\mathrm{L} / \mathrm{h}=1$

b) $\mathrm{L} / \mathrm{h}=0.84$

Input Reflection Coefficient (2):

Measured and Simulated Reflection Coefficient versus frequency \& different Normalised Probe Length

Radiation Patterns:

Finite Circular Ground Plane)

Numerical Results

Experimental Results

The Simulated Radiation Patterns agree wel with Experimental one

Numerical Results:

- TE 111 Mode is strongly Exited at $(L / h)>0.5$
- Resonance Frequency is Deceased with Increasing Probe Length
- Input Impedance is increased with

length

- Best Matching point at $(L / h)=0.7$
- Better Matching is obtained Considering a Small Gap

Experimental Results:

- TE 111 Mode is Strongly Exited at $(L / h)>0.5$
- Resonance Frequency is Decirsed with

Increasing Probe Length

- Input Impedance is increased with probe length
- Best Matching point at $(\underline{L} / h)=0.85$

Conclusions:

Numerical \& Experimental Study is Presented
Input Impedance were Measured
Mode of Interest is Strongly Excited at
$(L / h)>0.5$
Predicted Input Impedance agrees well with Experimental Results

Agreement could be better Considering a Small Gap

Probe length is Key Factor for Impedance Matching

