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Abstract

This paper illustrates an application of intelligent
control for a planar 3-RRR parallel manipulator. Unlike
control of serial manipulators that has been vastly
addressed in scientific literature, control of parallel
manipulators has been only addressed by few. A GA
optimized bi-level tuning fuzzy PD controller is
designed here to control the manipulator. In order to
consider the maximum allowable torque applied to
motors, the maximum torque is assumed to be the same
for both controllers. A bi-level tuning method is used
for tuning the fuzzy controller. In the first level, the
fuzzy PD controller’s normalizing parameters are
determined similar to a linear PD controller. In the
second level, other parameters of the fuzzy controller
are tuned using genetic algorithms. This fuzzy PD
controller is compared by a simple linear PD controller.
natural orthogonal compliment (NOC) method is used
to simulate dynamics of the manipulator. Results
indicate that the fuzzy PD controller has better
performance over linear PD controller.

Keywords: 3-RRR parallel manipulator, fuzzy control,
genetic algorithms, Model-free control

Introduction

Parallel manipulators are customarily used for tasks
requiring high payloads, high speed and high accuracy
due to their close-loop kinematic chain architecture [1].
As a result of these advantages, since the 1990s, parallel
manipulators have received significant attention within
the literature and have been utilized in various industrial
areas [1]. The early design of the parallel manipulator
was a six-linear jack system devised as a tire-testing
machine proposed by Gough and Whitehall [2]. Stewart
[3] designed a general six-legged platform manipulator
as an airplane simulator. Hunt [4] suggested the use of
the Stewart platform mechanism as a robot manipulator.
Since then, parallel mechanisms have been studied
extensively by numerous researchers.

Unlike control of serial manipulators that has been
vastly addressed in scientific literature, control of
parallel manipulators has only been addressed by few.
This is due to the increased complexity in the dynamics
and higher interaction between system components. A
comprehensive summary on such techniques for parallel

manipulators, in general, has recently appeared in [5]. In
many industrial applications, such as some assembly
and machining operations, parallel manipulators with
fewer degrees of freedom than six are successfully used
[6].

In this paper, control of a 3-RRR planar three-degrees-
of-freedom parallel manipulator is studied. To the best
of author's knowledge intelligent control methods, has
not been applied to 3-RRR parallel robots. A bi-level
tuned PD fuzzy controller is developed. In the first
level, a linear PD controller is independently applied to
each actuator. Next, fuzzy rules are developed to design
a fuzzy PD controller. Fuzzy controller normalizing
parameters are regulated according to maximum PD
control errors. This level of tuning is named linear
tuning. Linear tuned fuzzy controller has similar
properties to the PD controller which is named linear
like fuzzy logic controller (LLFLC) [7]. In the second
level, named nonlinear tuning, other parameters of the
fuzzy controller are tuned using genetic algorithms.
This step allows increasing the performance of fuzzy
controller to have better performance in tracing a
desired trajectory without any increase in maximum
torque applied to manipulator. In order to compare
performance of linear PD and fuzzy PD controllers,
NOC method[8] is used to simulate the manipulator’s
dynamics. At the end, a case study is performed to
illustrate the performance of purposed controller against
PD controller.

The manipulator’s structure

The manipulator is shown in “Figure 1”. The platform is
connected with three legs to the base. Each leg has one
active and two passive revolute joints and the three
motors M;, M, and M; are fixed and placed on the
vertices of an equilateral triangle. This manipulator
consists of a kinematic chain with three closed loops,
namely M,DABEM, ,M,EBCFM, and M;FCADM,.
The gripper is rigidly attached to the moving base,
triangle ABC. The manipulator is supposed to be
symmetric for simplification.



Figure 1: general form of a parallel 3-RRR manipulator

Kinematics analysis

The analysis of manipulator kinematics consists of
inverse kinematics and direct kinematics problems. In
direct kinematics problem the platform position and
orientation, [x,, y,, ¢]”, are obtained from active joint
angles, [q1, 92, q3]7, (see “Figure 1). Direct kinematics
analysis is an essential part of control and simulation in
parallel manipulators. In inverse kinematics problem the
active joint angles are obtained from platform position
and orientation. The inverse kinematics problem is also
important since manipulation tasks are naturally
formulated in terms of the expected end effector
position and orientation while the desired trajectory
needs to be expressed in terms of the motors angles for
control applications.

Inverse kinematics
There are straight forward inverse kinematics closed
solutions  for this parallel manipulator. For

simplification it is assumed that the triangle M,;M,M,

is equilateral and the distance between any two motors
is set to unity, for normalization purposes. As is shown

in “Figure 1", origin is placed on point M, . Solutions

are studied in [6]. Following relations gives angles of
the active joints:

gi = Qq; i l/)i fOTi = 1,2,3 (1)
a; = atan2(xy;, o) 2

Where ; is defined as following:
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Defining {@; }, {x,: }{, {oi }i, by Equations (4)-(8),
x,; and y,; could be obtained from Equations (9) and
(10):
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Direct kinematics

The degree of difficulty involved in finding a solution to
the direct kinematics problem of parallel manipulators is
higher than the corresponding serial manipulators.
Direct kinematics problem for 3-RRR parallel
manipulator is studied in [6]. Generally a closed form
solution for the direct kinematics is impossible to obtain
[6]. Therefore, the solution for the 3-RRR manipulator
requires utilization of a numerical method which in
general is not unique. The problem leads to a maximum
of 6 solutions [9]. Derivative methods such as Secant
method [10] are usually suggested to solve these
problems. A disadvantage of these methods is that the
computation is time consuming. Additionally, these
methods provide only one of the solutions which
depends on the initial guess. As pointed out earlier, the
direct Kkinematics problem has multiple solutions.
However, due to trajectory following only one of the
solutions fits the path and is the correct solution. In this
study, the previous position of platform is used as the
initial guess. By using this initial condition we have a
better chance to find the correct solution.

Dynamic analysis

Using NOC method introduced by Ma and Angeles [8],
dynamic model of the 3-RRR parallel manipulator is
expressed in the following compact form:

M(q)§*(t) + C(q,4)q"(t) = ¢ (11)

Where q% = [q1,q2,q3]" is the generalized coordinates
that g;,1 <i <3 denotes the angles of active joints
(motors) and q = [q1, 4z, -, qo]" Where q;,4<i<9
denotes relative angels of passive joints. In this equation
M(q) € R3*3 is the inertia matrix, C(q, ) € R332 is
the coefficient matrix of Coriolis and centrifugal forces
and 7% € R3*! denotes the actuation torques of the
motors.

If the value of q,q and@® are known one can easily
find7® by Equation (11). This procedure is named
inverse dynamics. Direct dynamic problem is defined as
finding the g%, when we know values of g,¢ and 7% . In
this study direct dynamics is used to simulate the
manipulator. When we don’t have a real robot,
simulation helps us to calculate feedback values. But in
simulating process we just have t¢, angles of active
joints (g?) and their angular velocities (¢?). Therefore
direct kinematics is utilized to calculate ¢ andg. In
direct dynamic problem Equation (11) should be solved
as a differential equation, therefore, a numerical method



is needed. The Runge-Kutta-Fehlberg method with
variable time steps is implemented in this study.

Control methods

Two control approaches are studied. First, a total of
three independent linear PD controllers, one for each
actuator, is considered. Second approach uses three
independent fuzzy logic PD controllers. In both
approaches, the positional error and their derivatives are
defined as follows:

€ = qlqdesired - ql{l (12)
¢, = L(q¢ —-q%) (13)
t dt 9i gesirea ~ i

Where i=1,23 denotes the actuator number.
e = [e1, e, e5]T and é = [é4, é,, é5]7 will be used as the
controller inputs. As it was mentioned, the desired
active joints angles, qi* . .. are obtained by inverse
kinematics and ¢{*,,.;,.,iS derived from ¢, . ..
“Figure 2” describes a linear PD or fuzzy PD controller
when they are implemented in the direct action (DA)
form [11].
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Figure 2: linear PD or fuzzy PD controller when they
are implemented in the direct action (DA) form
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Linear PD control

The linear PD control, allows one to use simple PD
regulators for each actuator. The control signal, u;,
produced by a PD regulator for it" actuator is given by:

Where Kp, and Kp, are proportional and derivative
gains for i*" actuator.

Direct action fuzzy logic control

Fuzzy logic control (FLC) has been successful in many
engineering applications since its early introduction by
Mamdani in 1974 [12]. These knowledge based control
formulations allow control to be performed in a
nonlinear fashion and therefore FLC has the ability to
provide improved performance against conventional
control. FLC is based on expert rules and requires no
additional system model for implementation. As it is
indicated, 3-RRR parallel manipulator has complex
forward kinematics which makes implementation of
conventional model based control algorithms difficult.
Under these circumstances, FLC has the ability to
provide improved control while requiring no additional
model estimates. For this work a fuzzy controller with
two inputs and one output is selected.

We will use suitable scale factors S, and S, for inputs
and S,, for output, for normalization purposes. The error
and its derivative are normalized by using the following
conditions:

é = max (1,min(1, S,e)) (15)
é = max (1, min(1, S..€)) (16)

These two normalized parameters will be used as
controller inputs. The controller output after the fuzzy
inference is denoted by #. Similarly the FLC output is
denormalized using the condition u = S, 4. “Figure 3”
illustrates the process of normalizing inputs and
denormalizing outputs for fuzzy controller in a control

loop.
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Figure 3: Normalization of inputs and outputs of fuzzy
controller

Using feedback errors, €, and its derivatives, €, as
inputs, a two-dimensional type fuzzy rule base is
developed. Seven membership functions for each of two
inputs are assumed in triangle form. Values of (S;), for
first input of controller (€) and (S;), for second input

of controller (&) can change the shape of triangles.
Where for each value of (S;); and (S;),, we have i=1, 2
and j= 1, 2. Twelve triangle membership functions are
used for output (See “Figure 4b™). For the two inputs
and one output configuration in “Figure 4”, a complete
rule matrix of size 7 by 7 is defined as:

If éis E,; and é is E,,; then i is Uy,; (17)

Where E,,; is input membership function used for fuzzy
controller where indices for input membership function
are indicated as the number of inputs (w) and the
number of the membership functions (i). U; is output
membership function for fuzzy controller where i
indicates the number of the membership functions.
Therefore a complete rule base would consist of 7 x
7=49 rules.
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Figure 4: Input membership functions (a) and output
membership functions (b) for fuzzy logic controller

Tuning the fuzzy controller

A two level tuning method introduced by Mann, Hu and
Gosine [13] used to tune fuzzy system parameters. In
the first level, called linear tuning, fuzzy controller
input and output normalizing parameters (S., S.. and
S, ) are regulated which makes fuzzy controller to act
like a linear PD controller. In order to increase the
performance of the controller without any increase in
maximum torque applied to manipulator, the second
level of tuning, named nonlinear tuning, is performed.
In this level, four nonlinear tuning parameters (S;),, and
SDw, i=1,2 and w =1, 2, of FLC (see “Figure 2”)
should be adjusted. A genetic algorithms method is used
for finding the optimum values of the nonlinear tuning
parameters.

Step 1: linear tuning

The linear tuning is defined as the determination of
linear PD gains based on linear controller performance.
When a fuzzy system is set to produce a linear function,
the FLC will become a linear type PD controller and is
defined as an equivalent linear controller (ELC) [7].
Using the ELC output the linear PD output can be
arranged in the following form:

Where K, and K, are defined as the ALG terms of the
FLC system. A FLC having linear rule base and uniform
partition of universe of discourse of all variables is
named as a linear-like fuzzy logic controller (LLFLC)
[7]. The ELC defined for the LLFLC is used for
deriving the linear tuning variables. Therefore, for all
fuzzy PD types in the paper, the ELC systems are
defined by considering uniformly partitioned fuzzy
subsets for all the fuzzy variables as follows. The
relations between normalizing parameters, S,,Sce, Sy,
and K, and K}, are as following [7]:

S.=2X%XKp (19)
Sce =4XKPXKD (20)
Se = 1/errorygy (21)

Where, errot,,, is the maximum absolute error when
an actuator is controlled by a simple linear PD
controller.

Step 2: nonlinear tuning

The nonlinear tuning is defined as the determination of
nonlinearity tuning parameters for obtaining the desired
normalized FLC output. These parameters are (S;)w
and (S,),, where w = 1,2. An alternative instruction for

tuning these parameters is suggested by [7]. However,
here, a genetic algorithms optimizing method is applied
to find optimum values of (S,),, and (S,), -

Simulation results

NOC method was used for dynamic simulating of
manipulator. The designed linear PD and fuzzy PD
controllers were tested during simulation. A specific
Cartesian trajectory in terms of time is chosen for center
of platform. For simplification orientation of platform
assumed to be zero along path. Using inverse
kinematics, angles of actuators as function of time were
obtained. The calculated angles of actuators were
supplied to both PD and fuzzy PD close loop systems as
desired input. Magnitude of Ky and Kp are selected 10
and 1 respectively using the trial and error approach. By
substitution Kp and Kp in Equations (19-21) the
normalizing parameters will be obtained. The S;,, and
S,w parameters were optimized by GA algorithms while
the fitness function is the maximum absolute error of
following the trajectory for center of platform in x-y
coordinates. For each input of FLC S;,, should less
than S,,, as it is shown in “Figure 4a”. It should be
noted that the used GA method finds the minimum
fitness. Properties of the used genetic algorithms
method are given in “Table 1"

Table 1
Option Value
Crossover function Heuristic
Crossover fraction 0.8
Elite number 2
Initial penalty 10
Mutation function Adaptive feasible
Penalty factor 100
Population initial range [-1,1]
Population size 100
Population type Bit string
Selection function Stochastic uniform

All considered parameters for FLC are listed in “Table
2” and “Table 3”. Parameters of all three controllers of

the three actuators
simplification.

are chosen the

same, for

Table 2: FLC linear tuning parameters

Parameter

S e SC e Su

value

10]1 2

Table 3: FLC nonlinear tuning parameters

Parameter |  (S;):

(52)1 (51)2 (52)2

value 0.0625

0.4375

0.3594 0.3750




Results are shown in “Figure 3” which indicates the
fuzzy PD controller performs with less error than simple
PD controller.

Figure 6: Comparing maximum torques for PD and
fuzzy optimized PD controller

Table 4; maximum absolute torques

0.5
St ./.f\ . e Maximum | Maximum Maximum
o e 2 absolute absolute absolute
- (o]
E torque of torque of torque of
z G motor 1 motor 2 motor 3
s desired path § Linear PD 0.21 0.53 0.58
——-PD control 8 Fuzzy PD 0.36 0.26 0.58
+ fuzzy PD control .g
0.46f ' “Figure 6” shows the torques which are applied to each
i motor by the two controllers. In “Table 4” the maximum
045 ‘ ‘ . . absolute torques for linear PD controller and fuzzy PD
03 038 04 045 05 035 controller are compared. Results show that the

gk maximum torque for linear PD and fuzzy PD are

somewhat the same. Therefore, it can be concluded that
fuzzy PD controller has better performance than linear
PD controller in a same condition.

Figure 5: Comparison of PD and fuzzy controllers
results for following a specific trajectory

o e — Conclusion
03 fuzzy PO control In this paper a GA optimized Bi-level tuning fuzzy PD
controller is applied to a 3-RRR planar parallel
manipulator. Two control approaches are studied. First,
a total of three independent linear PD controllers, one
for each actuator, are considered. Second approach uses
three independent fuzzy logic PD controllers. A two
level tuning method is used to tune fuzzy system
parameters. In first level, named linear tuning, a method
is implemented to fined normalizing parameters of
fuzzy controller from gains of a specified linear PD
controller. In next level, named nonlinear tuning,
a optimum values of other parameters of FLC are
obtained using genetic algorithms method. The fitness
function for the genetic algorithms method was selected
the maximum absolute error for following the trajectory.
The performance of the optimized FLC was compared
against the PD controller for a specific trajectory.
Results indicate that the fuzzy PD controller has a better
performance in tracking a desired trajectory.
Additionally, the maximum torque applied by the fuzzy
controller does not exceed that applied by the PD
controller.
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List of symbols

C(q,9) The coefficient matrix of coriolis and
centrifugal forces

Eyi The i" membership function for w input of fuzzy

controller

€ Control error vector of ith actuator

& Derivative of control error of ith actuator

errormax The maximum absolute error

g Kp, Proportional gain of ith controller
T Kp; Derivative gain of ith controller
f 1y Length of the first links in each leg
1, Length of the second links in each leg

15 The distance between moving platform’s apex to

it’s centre of surface

R T S R R R T I M(q) The inertia matrix

Qiesirea () Vector of desired active joint angles
c q?(t) Vector of active joint angles



g2 Vector of active joint angular velocities
G2(v) Vector of active joint angular accelerations
q“ Vector of active joint angles
Se Scale factor of first input of fuzzy controller
Sce Scale factor of first input of fuzzy controller
Su Scale factor of output of fuzzy controller
u; Applied torque to the i actuator
{; Normalized applied torque of i actuator
U; The i™ membership function for output of fuzzy

controller
Xoi The x coordinate of the third joint on each leg
Vai The y coordinate of the third joint on each leg
{Xoi } The x coordinate of i'" active joint position
{yoi } The y coordinate of i'" active joint position
Xp The x coordinate of moving platform position
Yp The y coordinate of moving platform position
0; Defined in text
Q Defined in text
T Vector of actuation torques of the motors
® Moving platform pure rotation about z direction
{®;} Defined in text
U Defined in text
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