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Abstract 
This paper illustrates an application of intelligent 
control for a planar 3-RRR parallel manipulator. Unlike 
control of serial manipulators that has been vastly 
addressed in scientific literature, control of parallel 
manipulators has been only addressed by few. A GA 
optimized bi-level tuning fuzzy PD controller is 
designed here to control the manipulator. In order to 
consider the maximum allowable torque applied to 
motors, the maximum torque is assumed to be the same 
for both controllers. A bi-level tuning method is used 
for tuning the fuzzy controller. In the first level, the 
fuzzy PD controller’s normalizing parameters are 
determined similar to a linear PD controller.  In the 
second level, other parameters of the fuzzy controller 
are tuned using genetic algorithms. This fuzzy PD 
controller is compared by a simple linear PD controller. 
natural orthogonal compliment (NOC) method is used 
to simulate dynamics of the manipulator. Results 
indicate that the fuzzy PD controller has better 
performance over linear PD controller. 
Keywords: 3-RRR parallel manipulator, fuzzy control, 
genetic algorithms, Model-free control 
 
Introduction 
Parallel manipulators are customarily used for tasks 
requiring high payloads, high speed and high accuracy  
due to their close-loop kinematic chain architecture [1]. 
As a result of these advantages, since the 1990s, parallel 
manipulators have received significant attention within 
the literature and have been utilized in various industrial 
areas [1]. The early design of the parallel manipulator 
was a six-linear jack system devised as a tire-testing 
machine proposed by Gough and Whitehall [2]. Stewart 
[3] designed a general six-legged platform manipulator 
as an airplane simulator. Hunt [4] suggested the use of 
the Stewart platform mechanism as a robot manipulator. 
Since then, parallel mechanisms have been studied 
extensively by numerous researchers.  
Unlike control of serial manipulators that has been 
vastly addressed in scientific literature, control of 
parallel manipulators has only been addressed by few. 
This is due to the increased complexity in the dynamics 
and higher interaction between system components. A 
comprehensive summary on such techniques for parallel 

manipulators, in general, has recently appeared in [5]. In 
many industrial applications, such as some assembly 
and machining operations, parallel manipulators with 
fewer degrees of freedom than six are successfully used 
[6].  
In this paper, control of a 3-RRR planar three-degrees-
of-freedom parallel manipulator is studied. To the best 
of author's knowledge intelligent control methods, has 
not been applied to 3-RRR parallel robots.  A bi-level 
tuned PD fuzzy controller is developed. In the first 
level, a linear PD controller is independently applied to 
each actuator. Next, fuzzy rules are developed to design 
a fuzzy PD controller. Fuzzy controller normalizing 
parameters are regulated according to maximum PD 
control errors. This level of tuning is named linear 
tuning. Linear tuned fuzzy controller has similar 
properties to the PD controller which is named linear 
like fuzzy logic controller (LLFLC) [7]. In the second 
level, named nonlinear tuning, other parameters of the 
fuzzy controller are tuned using genetic algorithms.  
This step allows increasing the performance of fuzzy 
controller to have better performance in tracing a 
desired trajectory without any increase in maximum 
torque applied to manipulator. In order to compare 
performance of linear PD and fuzzy PD controllers, 
NOC method[8] is used to simulate the manipulator’s 
dynamics. At the end, a case study is performed to 
illustrate the performance of purposed controller against 
PD controller. 
 
The manipulator’s structure 
The manipulator is shown in “Figure 1”. The platform is 
connected with three legs to the base. Each leg has one 
active and two passive revolute joints and the three 
motors ܯଵ,  ଷ are fixed and placed on theܯ  ଶ andܯ
vertices of an equilateral triangle. This manipulator 
consists of a kinematic chain with three closed loops, 
namely ܯଵܯܧܤܣܦଶ ,  .ଵܯܦܣܥܨଷܯ ଷ  andܯܨܥܤܧଶܯ
The gripper is rigidly attached to the moving base, 
triangle ABC. The manipulator is supposed to be 
symmetric for simplification. 
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Figure 1: general form of a parallel 3-RRR manipulator  
 
Kinematics analysis 
The analysis of manipulator kinematics consists of 
inverse kinematics and direct kinematics problems. In 
direct kinematics problem the platform position and 
orientation, ሾݔ, ,ݕ ߮ሿ், are obtained from active joint 
angles, ሾݍଵ, ,ଶݍ  ଷሿ், (see “Figure 1”). Direct kinematicsݍ
analysis is an essential part of control and simulation in 
parallel manipulators. In inverse kinematics problem the 
active joint angles are obtained from platform position 
and orientation. The inverse kinematics problem is also 
important since manipulation tasks are naturally 
formulated in terms of the expected end effector 
position and orientation while the desired trajectory 
needs to be expressed in terms of the motors angles for 
control applications. 
 
Inverse kinematics 
There are straight forward inverse kinematics closed 
solutions for this parallel manipulator. For 
simplification it is assumed that the triangle 321 MMM  
is equilateral and the distance between any two motors 
is set to unity, for normalization purposes. As is shown 
in “Figure 1”, origin is placed on point 1M . Solutions 
are studied in [6]. Following relations gives angles of 
the active joints: 
 
ߠ ൌ ߙ േ ߰              ݂ݎ ݅ ൌ 1,2,3 (1) 
 
ߙ ൌ ,ଶݔ2ሺ݊ܽݐܽ  ଶሻ (2)ݕ
 
Where ߰ is defined as following: 
 

߰ ൌ ଵିݏܿ భ
మିమ

మା௫మ
మ ା௬మ

మ

ଶభට௫మ
మ ା௬మ

మ
     0 ع ߰ ع  (3) ߨ

 
Defining ሼߔ ሽଵ

ଷ, ሼݔ ሽଵ
ଷ, ሼݕ ሽଵ

ଷ, by Equations (4)-(8), 
 ଶ could be obtained from Equations (9) andݕ ଶ andݔ
(10): 
 
ଵߔ ൌ ߔ   (4) 6/ߨ
 
ଶߔ ൌ ߔ   (5) 6/ߨ5

 
ଷߔ ൌ ߔ െ  ሺ6ሻ 2/ߨ
 
ሼݔ ሽ ൌ ሼ0,1,1/2ሽ (7) 
 
ሼݕ ሽ ൌ ሼ0,0, √3/2ሽ (8) 
 
ଶݔ ൌ ݔ െ ݈ଷܿߔݏ െ   (9)ݔ
 
ଶݕ ൌ ݕ െ ݈ଷߔ݊݅ݏ െ   (10)ݕ
 
Direct kinematics 
The degree of difficulty involved in finding a solution to 
the direct kinematics problem of parallel manipulators is 
higher than the corresponding serial manipulators. 
Direct kinematics problem for 3-RRR parallel 
manipulator is studied in [6]. Generally a closed form 
solution for the direct kinematics is impossible to obtain 
[6].  Therefore, the solution for the 3-RRR manipulator 
requires utilization of a numerical method which in 
general is not unique. The problem leads to a maximum 
of 6 solutions [9]. Derivative methods such as Secant 
method [10] are usually suggested to solve these 
problems. A disadvantage of these methods is that the 
computation is time consuming. Additionally, these 
methods provide only one of the solutions which 
depends on the initial guess. As pointed out earlier, the 
direct kinematics problem has multiple solutions. 
However, due to trajectory following only one of the 
solutions fits the path and is the correct solution. In this 
study, the previous position of platform is used as the 
initial guess. By using this initial condition we have a 
better chance to find the correct solution.  
 
Dynamic analysis 
Using NOC method introduced by Ma and Angeles [8], 
dynamic model of the 3-RRR parallel manipulator is 
expressed in the following compact form: 
 
ሷݍሻݍሺܯ ሺݐሻ  ,ݍሺܥ ሶݍ ሻݍሶ ሺݐሻ ൌ ߬ (11) 
 
Where ݍ ൌ ሾݍଵ, ,ଶݍ  ଷሿ் is the generalized coordinatesݍ
that ݍ, 1  ݅  3  denotes the angles of active joints 
(motors) and ݍ ൌ ሾݍଵ, ,ଶݍ … , ,ݍ ଽሿ் whereݍ 4  ݅  9  
denotes relative angels of passive joints. In this equation 
ሻݍሺܯ א Ըଷൈଷ  is the inertia matrix, ܥሺݍ, ሶݍ ሻ א Ըଷൈଷ is 
the coefficient matrix of Coriolis and centrifugal forces 
and ߬ א Ըଷൈଵ denotes the actuation torques of the 
motors.  
If the value of ݍ, ሶݍ   and ݍሷ  are known one can easily 
find ߬  by Equation (11). This procedure is named 
inverse dynamics. Direct dynamic problem is defined as 
finding the ݍሷ , when we know values of ݍ, ሶݍ   and ߬ . In 
this study direct dynamics is used to simulate the 
manipulator. When we don’t have a real robot, 
simulation helps us to calculate feedback values. But in 
simulating process we just have ߬, angles of active 
joints (ݍ

) and their angular velocities (ݍሶ). Therefore 
direct kinematics is utilized to calculate ݍ and ݍሶ . In 
direct dynamic problem Equation (11) should be solved 
as a differential equation, therefore, a numerical method 
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qሶ ୟሺtሻ   Vector of active joint angular velocities 
qሷ ୟሺtሻ   Vector of active joint angular accelerations 
q୳  Vector of active joint angles 
Sୣ  Scale factor of first input of fuzzy controller  
Sୡୣ  Scale factor of first input of fuzzy controller 
S୳  Scale factor of output of fuzzy controller 
u୧  Applied torque to the ith actuator 
uො୧  Normalized applied torque of ith actuator 
U୧  The ith membership function for output of fuzzy 
 controller 
xଶ୧  The x coordinate of the third joint on each leg 
yଶ୧  The y coordinate of the third joint on each leg 
ሼx୭୧ ሽ  The x coordinate of ith active joint position 
ሼy୭୧ ሽ  The y coordinate of ith active joint position 
x୮  The x coordinate of moving platform position 
y୮  The y coordinate of moving platform position 
θ୧  Defined in text 
α୧  Defined in text 
τୟ  Vector of actuation torques of the motors 
φ  Moving platform pure rotation about z direction 
ሼΦ୧ ሽ  Defined in text 
ψ୧  Defined in text 
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