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Abstract 
One of the essential parts in control and simulation of 
parallel manipulators is obtaining direct kinematic 
solution. The Direct kinematics of parallel manipulators 
has been a challenging problem because of complexity 
and is considered by a few researchers. There is not in 
general a close-form solution for the problem. 
Identifying the proper solution among multiple solutions 
is another challenging problem. This paper presents 
direct kinematic solutions for a planar 3-RRR parallel 
manipulator. Numerical methods are traditionally used 
to obtain one of the solutions which due to path 
requirement and complexity of the path may not lead to 
the desired solution. We introduce the use of 
manipulator’s Jacobian in order to estimate the next 
direct kinematic solution. Jacobian is calculated using 
current point coordinates in a path to estimate next point 
coordinates. But it is shown that errors may add up and 
become non negligible. Bezout‘s elimination is used to 
obtain all possible solutions however identification of 
the correct solution still remains.  The proposed method 
combines Bezout’s elimination with manipulator 
Jacobian to efficiently identify the desired solution. 
Keywords: Direct kinematics, Parallel manipulator, 
Jacobian, Bezout‘s elimination method. 
 
Introduction  
Parallel manipulators are defined as ‘‘a closed-loop 
kinematic chain mechanisms which end effector is 
linked to the base by several independent kinematic 
chains ’’ [1]. Due to their high stiffness, high speed and 
large load carrying capacity, parallel mechanisms have 
become very popular in the past decade. Parallel 
mechanisms typically consist of two platforms which 
are connected by several serial kinematic chains. The 
early design of the parallel manipulator was a six-linear 
jack system devised as a tire-testing machine proposed 
by Gough and Whitehall [2]. Stewart [3] designed a 
general six-legged platform manipulator as an airplane 
simulator. Since then, parallel mechanisms have been 
studied extensively by numerous researchers (Hunt [5], 
Fichter [6], Sugimoto [7], Merlet [1], Nanua et al. [8], 
Innocenti and Parenti-Castelli [9], Zhang and Song [10], 
Tsai [11]). Many researchers considered kinematics of 
parallel manipulators. Kinematics problem have been 
investigated in two different branches: direct kinematics 

and inverse kinematics. Mostly there is a close form 
solution for inverse kinematics but not for direct 
kinematics. Direct kinematics of parallel manipulator 
has been studied by a few researchers, [1], [12], [13].  In 
many industrial applications, such as some assembly 
and machining operations, parallel manipulators with 
fewer degrees of freedom than six are successfully used.  
In this paper, a 3-RRR planar three-degree-of-freedom 
parallel manipulator is studied. A new method for 
finding the desired solution for a 3-RRR parallel 
manipulator has been proposed. It is shown that there 
exists a maximum of 6 real solutions for the direct 
kinematics problem [12]. However, obtaining the one 
desired solution has been a challenging problem. The 
method combines Bezout's elimination method with the 
advantages of manipulator's Jacobian to find the desired 
solution in an efficient and novel manner.  
 
Kinematics of parallel manipulators 
The basic components of a robot system include the 
manipulator, sensory devices, controller, and power 
conversion unit where the sensory devices are 
distributed all over the system. Equivalently, a 
manipulator may be considered to be composed of three 
parts—the major linkages, the minor linkages (wrist 
components), and the end effector (gripper or tool).  
Kinematic analysis of parallel manipulators includes 
solution to the direct and inverse kinematic problems as 
well as velocity and acceleration inversion. The direct 
kinematics of a robot deal with the computation of the 
position and orientation of the robot end effector in 
terms of the robot active joint variables. The joint 
variables are angles between two links or joint 
extensions depending on whether the joint is revolute or 
prismatic. Direct kinematic analysis is one of essential 
parts in control and simulation of parallel manipulators. 
In contrast to the direct kinematics, the inverse 
kinematics problem of a robot deal with the 
determination of the joint variables corresponding to 
any specified position and orientation of the end 
effector. The inverse kinematics problem is important 
since manipulation tasks are naturally formulated in 
terms of the expected end effector position and 
orientation. In most parallel manipulators solving the 
direct kinematics problem according to the 
manipulator’s kinematical sub chains and due to the fact 
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that a systematic general closed-form solution is not 
readily available is more complex than the inverse 
kinematics problem. 
  
Structure of planar 3-RRR parallel manipulator 
A 3-RRR planar three-degree-of-freedom is studied in 
this paper. The manipulator consists of three legs. Each 
leg is made of one actuated revolute joint and two 
passive revolute joints. It includes three closed 
kinematics loops where two of them are independent and 
the other is dependent. The kinematic chain of the 
general mechanism is shown in “Figure 1”.  

 

 
 

Figure 1: Planar parallel 3-RRR manipulator [2] 
 

The three motors Mଵ, Mଶ and Mଷ are fixed and placed on 
the vertices of an equilateral triangle. This manipulator 
consists of a kinematic chain with three closed loops, 
namely MଵDABEMଶ , MଶEBCFMଷ  and MଷFCADMଵ. The 
gripper is rigidly attached to the moving base, triangle 
ABC. It is pointed out that only two of the 
aforementioned loops are kinematically independent 
[12]. The gripper will be asked to follow an arbitrary 
trajectory in the plane of motion. Therefore, there should 
not be any preferred general orientation for which the 
manipulator would have better properties. This suggests 
that the manipulator should be symmetric [12]. 

To calculate the degrees of freedom of the system we 
must find the number of the one-DOF joints and the 
number of movable rigid bodies [14]. The 3-RRR 
manipulator’s structure has nine one-degree-of-freedom 
joints (m) and seven movable rigid bodies (r). So we can 
write:  

n = 6×r − 5×m 

   = 6×7 − 5×9=3  (1) 

l = m − r 

  = 9 − 7 = 2 (2) 

This results in three degrees-of-freedom (n) and two 
independent kinematic loops (l).  

Direct kinematic problem 
The gripper of the 3-RRR parallel manipulator will be 
asked to follow a desired path. The center position and 
orientation of the moving platform (gripper) is defined 
by xp, yp and φ, respectively. The direct kinematics 

problem seeks to obtain the position and orientation of 
the moving platform given the position of the actuated 
joint angles.  It is shown that there exists a maximum of 
6 real solutions for the problem [12]. The closed form 
solution to the direct kinematics is not accessible. 
Therefore, the solution for the 3-RRR manipulator 
requires utilization of a numerical method which 
depending on the initial guess will lead to one of the six 
possible solutions. Referring to“Figure1”, if the three 
input angles are specified, the position of points D, E 
and F are readily computed. Moreover, the chain DABE 
is a four-bar linkage “Figure 2” of which C is a point on 
the coupler link generating a coupler curve.  
 

 

 
 

Figure 2: Equivalent four bar mechanism [12] 
 
A solution for the closure of the whole kinematic chain 
is obtained whenever the coupler curve described by the 
motion of point C intersects the circle defined by the 
rotation of link FC around point F. The forgoing 
principle is now used to derive the equations that will 
lead to the two following coupled trigonometric 
equations:   
 
xC ൌ xD ൅ lଶ cosሺαଵ ൅ ψሻ ൅ √3lଷ cosሺαଵ ൅ αଶ ൅ θሻ (3) 
  
yC ൌ yD ൅ lଶ sinሺαଵ ൅ ψሻ ൅ √3lଷ sinሺαଵ ൅ αଶ ൅ θሻ (4) 
      
Where:  
 
αଶ=π/3 (5) 
 
αଵ ൌ atan2ሾ୷Eି୷D

୶Eି୶D
ሿ (6) 

 

θଵ,ଶ ൌ 2tanିଵሾBേඥBమି୅C
୅

ሿ (7) 
 
With A, B and C that summarized in the following 
form:  
 
A=mଵ െ mଶ ൅ ሺ1 ൅ mଷሻ cosሺψሻ, (8) 
 
B=sinሺψሻ, (9) 
 
C=mଵ ൅ mଶ ൅ ሺmଷ െ 1ሻ cosሺψሻ, (10) 
 
Where: 
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mଵ ൌ ିୢమିଷ୪య
మ

ଶ√ଷ୪మ୪య
, (11) 

 
mଶ ൌ ୢ

୪మ
, (12) 

 
mଷ ൌ ୢ

√ଷ୪య
, (13) 

 
d=ඥሺxE െ xDሻଶ ൅ ሺyE െ yDሻଶ (14) 
 
The coupler curve intersects the circle defined by the 
rotation of link F C around point F. Therefore, 
following equation could be obtained: 
 
ሺxC െ xFሻଶ ൅ ሺyC െ yFሻଶ ൌ lଶ (15) 
 
Now, the nonlinear relations that must be solved are 
equations (7) and (15). By rewriting these two equations 
in terms of ߠ and ߰ variables, a set of non-linear 
equations will be obtained. These two equations could 
be solved numerically for angles ߠ and ߰. Derivative 
methods such as Secant method are usually suggested to 
solve these problems [15]. These methods provide only 
one of the solutions which itself depends on the initial 
guess. However, considering the requirement of the path 
following, only one solution is possible which may not 
be the one provided by the derivative methods. Another 
approach is using Bezout’s method to find all solutions 
for the direct kinematic problem. However, due to path 
following only one of the real solutions fits the path and 
must be selected. We will introduce the use of 
manipulator's Jacobian in order to estimate the solution 
while following a path. However, the error may not be 
negligible for all points along the path. The proposed 
method combines manipulator's Jacobian along with 
Bezout’s method to identify the one desired solution in 
an efficient way. 
 
The use of Manipulator Jacobian 
The Jacobian relation for the 3-RRR manipulator is 
defined as following: 
 
Jt ൅ Kθሶ ൌ 0                                                                (16) 
 

Where t is Cartesian vector, t ൌ ൣ x୮ሶ , y୮ሶ , φሶ ൧்
 and θ is 

the vector of actuated joint angles,  θ ൌ ሾ θଵ, θଶ, θଷሿ். ܬ 
and K are 3 by 3 matrices which are illustrated below: 
 

ܬ ൌ ൥
ܽଵ ܾଵ ܿଵ
ܽଶ ܾଶ ܿଶ
ܽଷ ܾଷ ܿଷ

൩ (17) 

 

ܭ ൌ ൥
݀ଵ 0 0
0 ݀ଶ 0
0 0 ݀ଷ

൩ (18) 

 
Where ܽ௜, ܾ௜, ܿ௜ and ݀௜ are in terms of platform 
coordinates and presented by Gosselin and Angeles 
[12]. Equation (16) may be used to estimate the next 
position of the moving platform in the form of the 
following equation:   
 

൝
x୮
y୮
φ

ൡ
୬ୣ୵

ൌ ൝
x୮
y୮
φ

ൡ
୭୪ୢ

െ J୭୪ୢ
ିଵ K୭୪ୢሺθ୬ୣ୵ െ θ୭୪ୢሻ                   (19)  

            
Where Jold and Kold are in the terms of the last state of 
the manipulator. Next, we will show Jacobian could be 
used for direct kinematic estimation in a path following 
problem. It should be noted that workspace of 
manipulator is a 3 dimensional space which includes xp , 
yp and φ. A certain circular path is selected for xp and yp 
variables. The angle of the moving platform, φ , is 
assumed to be zero. The following steps are 
implemented to identify direct kinematics solution: 
 

1. The path is divided into an arbitrary number of 
points. For each point the coordinate (xp, yp 
and φ ) are considered for the next step. 

2. Using inverse kinematics [12], active joint 
variables ሺߠଵ,  ଷ) are obtained for entireߠ ଶ andߠ
points along the path. 

3. Starting from first point, this point is 
considered as the old point coordinates, 

 ൝
xp
yp
φ

ൡ
old

. 

4. Jold and Kold are calculated and an estimation 

for next (new) point coordinates, ൝
xp
yp
φ

ൡ
new

 , is 

obtained by (19). 
5. The new coordinate calculated in step 4 is used 

as "old" coordinate for obtaining the next 
solution. 

6. Repeating steps 4 through 5 will obtain the 
direct kinematic solution of entire path.  

Results are compared with the desired circular path and 
depicted in the “Figure 3”. 
 

 
 

Figure 3: The desired path traced using the 
manipulator’s Jacobian with errors  

 
As is shown in “Figure 3”, utilizing Jacobian will 
produce results that approximately follow the desired 
path with some points having non negligible errors. 
However, the Jacobian will aid to identify the correct 
solution from solutions obtained by Bezout’s 
elimination method, in an efficient manner. 
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The Bezout’s elimination method 
The Bezout’s elimination method is traditionally used 
for reducing a set of polynomials of multiple variables 
into a polynomial of only one variable [16]. To solve 
the nonlinear relations (7) and (15) by Bezout’s 
elimination method, the trigonometric equations must 
be transformed into a set of polynomials. This 
transformation can be achieved by using the following 
trigonometric identities for change of variables:  
  
tan ቀ஘

ଶ
ቁ ൌ zଵ (20) 

 
tan ቀந

ଶ
ቁ ൌ zଶ (21) 

 
sinሺθሻ ൌ ଶ୸భ

ଵା୸భ
మ (22) 

 
sinሺψሻ ൌ ଶ୸మ

ଵା୸మ
మ (23) 

 
cosሺθሻ ൌ ଵି୸భ

మ

ଵା୸భ
మ (24) 

 
cosሺψሻ ൌ ଵି୸మ

మ

ଵା୸మ
మ (25) 

 
Substituting the above expressions into relations (7) and 
(15) and applying some simplifications, one can obtain 
the following polynomials: 
 
fଵ ൌ ∑ ሺ∑ ൫a୧୨zଵ

୧ିଵzଶ
୨ିଵ൯ଷ

୨ୀଵ ሻଷ
୧ୀଵ  (26) 

 
fଶ ൌ ∑ ሺ∑ ൫b୧୨zଵ

୧ିଵzଶ
୨ିଵ൯ଷ

୨ୀଵ ሻଷ
୧ୀଵ  (27) 

 
Where a୧୨  and  b୧୨ are the coefficient of polynomial 
equations (26) and (27) which are collected by the 
powers of zଵ and zଶ.  
With the Bezout’s method, variable zଵ could be 
eliminated in the equations (7) and (15) and the 
resulting equation is given as follows: 
           

ฬFଵଵ Fଵଶ
Fଶଵ Fଶଶ

ฬ ൌ 0 (28) 

 
Where ijF  is defined in following equations: 
 

Fଵଵ ൌ ฬܽଷଷݖଶ
ଶ ൅ ܽଷଶݖଶ ൅ ܽଷଵ ܽଵଷݖଶ

ଶ ൅ ܽଵଶݖଶ ൅ ܽଵଵ
ܾଷଷݖଶ

ଶ ൅ ܾଷଶݖଶ ൅ ܾଷଵ ܾଵଷݖଶ
ଶ ൅ ܾଵଶݖଶ ൅ ܾଵଵ

ฬ  

 (29) 
 

Fଵଶ ൌ ฬܾଶଷݖଶ
ଶ ൅ ܾଶଶݖଶ ൅ ܾଶଵ ܽଶଷݖଶ

ଶ ൅ ܽଶଶݖଶ ൅ ܽଶଵ
ܾଷଷݖଶ

ଶ ൅ ܾଷଶݖଶ ൅ ܾଷଵ ܽଷଷݖଶ
ଶ ൅ ܽଷଶݖଶ ൅ ܽଷଵ

ฬ  

 (30) 
 

Fଶଵ ൌ ฬܽଶଷݖଶ
ଶ ൅ ܽଶଶݖଶ ൅ ܽଶଵ ܽଵଷݖଶ

ଶ ൅ ܽଵଶݖଶ ൅ ܽଵଵ
ܾଶଷݖଶ

ଶ ൅ ܾଶଶݖଶ ൅ ܾଶଵ ܾଵଷݖଶ
ଶ ൅ ܾଵଶݖଶ ൅ ܾଵଵ

ฬ  

 (31) 
 

Fଶଶ ൌ ฬܽଷଷݖଶ
ଶ ൅ ܽଷଶݖଶ ൅ ܽଷଵ ܽଵଷݖଶ

ଶ ൅ ܽଵଶݖଶ ൅ ܽଵଵ
ܾଷଷݖଶ

ଶ ൅ ܾଷଶݖଶ ൅ ܾଷଵ ܾଵଷݖଶ
ଶ ൅ ܾଵଶݖଶ ൅ ܾଵଵ

ฬ  

 (32) 
 
Where |כ| denotes the determinant of a matrix. After 
expanding and simplification, relation (28) becomes: 
 
Lଽzଶ

଼൅L଼zଶ
଻ ൅ L଻zଶ

଺൅L଺zଶ
ହ ൅ Lହzଶ

ସ൅Lସzଶ
ଷ ൅

Lଷzଶ
ଶ൅Lଶzଶ ൅ Lଵ ൌ 0 (33) 

 
Where L୧ are the functions of a୧୨ and b୧୨ only. Detailed 
expressions of L୧ could be developed by expanding 
equation (33). 
The eight solutions for  zଶ could be found numerically 
by solving equation (33). Substituting each solution of 
 zଶ  in converted form of equations (7) and (15), that are 
equations (26) and (27), results in two solutions for  zଵ. 
Therefore, a total of 16 solutions will be obtained. As it 
was stated earlier, a maximum of 6 solutions for direct 
kinematics exists. Therefore there exist maximum of six 
real solutions and the rest are imaginary. ߠ and ߰ can 
now be calculated. 
 
ߠ ൌ 2atanሺ zଵሻ,  (34) 
 
߰ ൌ 2atanሺ zଶሻ (35) 
 
Then platform position and orientation could be 
obtained as following: 
 
x ൌ  xD ൅ lଶ cosሺαଵ ൅ ψሻ ൅ lଷ cosሺαଵ ൅ αଶ/2 ൅ θሻ (36) 
 
y ൌ  yD ൅ lଶ sinሺαଵ ൅ ψሻ ൅ lଷ sinሺαଵ ൅ αଶ/2 ൅ θሻ (37) 
 
φ ൌ ψ ൅  θ (38) 
 
An example is performed for the manipulator with 
properties shown in “Table 1”.  
 

Table 1: Manipulator properties 
 

 First leg Second 
leg 

Third 
leg 

݈ଵ (m) 0.5 0.5 0.2 

݈ଶ  (m) 0.5 0.5 0.2 

݈ଷ (m) 0.5 0.5 0.2 

Actuator’s 
position 

(m) 
ቄ0
0ቅ ቄ1

0ቅ 

ە
۔

ۓ
1
2

√3
2 ۙ

ۘ

ۗ
 

Actuator’s 
angle 

(degrees) 
-89.825 -6.778 36.986 

 
Direct kinematics results are shown in “Table 2”.  
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The proposed algorithm is verified on the same circular 
trajectory. Results are depicted in “Figure 6”. This 
figure shows that the solutions of the combine method 
follow the trajectory. 
 
Conclusion 
In this paper a planar 3-RRR parallel manipulator 
undergoing a desired path was introduced.  First the 
direct kinematics equations of the manipulator were 
derived. A method that utilized manipulator's Jacobian 
was introduced to approximate the next solution on the 
path. A circular path was selected to verify this method. 
Results indicated that errors are non negligible in some 
circumstances. Next Bezout's elimination was used to 
obtain all possible solutions for all platform coordinates 
along the path. Finally, Bezout's elimination and 
manipulator's Jacobian were combined. This allows 
identification of the one desired solution that fits the 
path. The proposed method was implemented on same 
circular path. Results confirm correctness of the 
combined method.  
 
List of symbols 
J  The first Jacobian matrix of the parallel manipulator 
K  The first Jacobian matrix of the parallel manipulator 
l   Number of independent kinematic loops in 
 parallel mechanism 
lଵ  Length of the first links in each leg 
lଶ  Length of the second links in each leg 
lଷ  The distance between moving platform’s apex to 
 it’s centre of surface 
m  Number of movable rigid bodies in the mechanism 
n  The degrees of freedom of parallel mechanism 
r  Number of one DOF joints in the mechanism 
x୮  The x coordinate of moving platform position 
y୮  The y coordinate of moving platform position 
xଶ୧  The x coordinate of the third joint on each leg 
yଶ୧  The y coordinate of the third joint on each leg 
φ  Moving platform pure rotation about z direction 
θ  Rotation of moving platform according to line DE 
α୧  Rotation of line DE 
ψ୧  Rotation of link DA according to line DE 
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