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Abstract 
It is practically impossible to manufacture a component exactly with the required 
dimensions. Therefore for each part dimension, a tolerance limit is prescribed. Also 
for all assemblies, a limit of variation is prescribed for a specified parameter of the 
assembly which is referred to as the assembly specification, and it could be the 
position of a point. If the assembly specification has limits of variation in two or more 
directions, the correlation between these variations also impresses the limit of 
variation. To determine the bivariate distribution of the assembly specification, in 
terms of part tolerances, the Direct Linearization Method (DLM) is used. In this paper, 
the Coupler Point (C.P.) position of a crank slider mechanism during one cycle of 
motion is considered as the assembly specification. The DLM results are validated 
with Monte Carlo simulation method and the percent contribution of each 
manufacturing variable in assembly specification is determined by multiple regression 
method. This paper proposes that by tightening the tolerances of those 
manufacturing variables that have the highest contribution in the maximun error of 
mechanism, the amount of maximum error of mechanism could be decreased 
significantly. 
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1 Introduction 
An important aim in designing kinematic linkages is creating an accurate path by 
means of a point on the coupler. This point and the corresponding path are called 
Coupler Point (C.P.) and Coupler Point Path, respectively. In each cycle of motion,  
manufacturing tolerances of the parts cause a deviation in the C.P. path from its 
designed or ideal state. These deviations can lead to undesirable performance of the 
mechanism. There are several methods which were proposed to determine the effect 
of part tolerances on C.P. path deviations or the performance of the mechanism. An 
efficient method in assembly tolerance analysis, called the Direct Linearization 
Method (DLM). The Direct Linearization Method (DLM) is firstly presented by Marler 
[1]. This method has been extended by Parkinson and Chase for static structures 
and kinematic mechanisms [2]. Wittwer investigated path mechanism error by DLM 
and comprised with other statistics analysis methods [3]. They assumed that all 
components are rigid. 
In Section 2 of this paper, the kinematic model of a four-bar mechanism including 
tolerances of manufacturing variables is expressed. In Section 3, the Direct 
Linearization Method is demonstrated and the equations of vector loops, sensitivity 
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matrix and position error are obtained. In the following section, the DLM method is 
applied to find the bivariate distribution of the C.P. position error. The valid domains 
of the DLM are determined by means of Monte Carlo simulation in Section 5. So in 
next sections, the percent contribution of manufacturing variables in the assembly 
specification by multiple linear regression is then determined. Finally maximum error 
of mechanism, by changing tolerance of the variables have major affect in error 
function, is reduced. Therefore, a mechanism rejects is decreased. 
 
2 Crank slider mechanism model 
In the current work, The C.P position error of a crank slider mechanism is analyzed, 
(see Figure 1). The reference path of C.P. is generated by assuming nominal 
dimensions for all components. 
For each component of the mechanism, the manufacturing tolerances are specified 
on the basis of corresponding manufacturing processes and length of dimension [4]. 
Hence, tolerances of each nominal dimensions based on Figure 2 are selected, and 
in table 1 is presented. 
 

 
 

 
Figure 1: Crank slider mechanism with 

driving crank. 
Figure 2: Tolerance range of machining 

processes [5]. 
 

Table 1. Nominal dimensions and tolerances of manufacturing variables (mm). 
Manufacturing Variables 2r  3r  4r  pr  β  1θ  

Nominal Dimension 250 400 25 104 80° 0° 
Tolerance ± 0.3 ± 0.2 ± 0.02 ± 0.15 ± 0.5° ± 0.5° 

 
Angular position of link 2 (θ2) is considered as an input to the mechanism. Therefore, 
it is not a manufacturing dimension and zero tolerance is assigned. All manufacturing 
dimensions are assumed to be normally distributed with a mean equal to the nominal 
link length. Also, the acceptable limit of distribution is taken according to common 
standard of 3σ.  
 
3 Direct Linearization Method(DLM) 
The Direct Linearization Method (DLM) can be used to determine the position error of 
a kinematic linkage. In this paper , point C.P. is designed to follow a specific path as 
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the input crank (link 2) is rotated. The nominal position of point C.P. for a given input 
crank angle, θ2, is found by solving one closed vector loop equations and one open 
vector loop equation (see Figure 3). 
 

 
Figure 3: (a) Closed vector; (b) loop Open vector loop 

 
Since position of point C.P. is defined by two direction x and y, so each vector loops 
is separated in to two equation. Closed and open loop equations are shown as follow, 
respectively: 
 

11443322 coscoscoscos θθθθ rrrrhx −−+= (1) 
11443322 sinsinsinsin θθθθ rrrrhy −−+= (2) 

( )βθθ ++= 322 coscos.).( px rrPC (3) 
( )βθθ ++= 322 sinsin.).( py rrPC (4) 

 
In this method, the sensitivity matrix is derived using open and closed vector loops. 
The position error can be predicted by applying statistical approaches. Therefore ,It 
will be assumed that the actual dimensions are normally distributed with a mean 
equal to the nominal link length with a standard deviation 3σ. 
Partial derivatives of equations 1 and 2 with respect to the manufacturing variables, 
give us limit of assembly variables. These equations are then linearized using a first-
order Taylor's series expansion [6]. This is written as: 
 

0}]{[}]{[ =+ dUBdXA (5) 
 
Where {X}={r2,r3,r4,rp,β,θ1,θ2}is the vector of manufacturing variables and {U}={ θ3, r1} 
is the vector of assembly variables. [A] and [B] are matrices which represent first-
order derivatives of equations (1) and (2) with respect to the manufacturing and 
assembly variables, respectively, i.e. 
 

ji XhA ∂∂=][ (6) 

ji UhB ∂∂=][ (7) 

 
Equation (5) can be rewritten as: 
 

}]{[][}{ 1 dXABdU −−= (8) 
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A similar process is applied for open loop equations. Equation (9) expresses the 
variations of the assembly specification, i.e. C.P., in terms of the manufacturing and 
assembly variables. 
 

}]{[}]{[.)}.({ dUDdXCPCd += (9) 
 
Where [C] and [D]  are first-order derivatives of equations (3) and (4) with respect to 
the manufacturing and assembly variables, respectively, i.e. 
 

ji XPCC ∂∂= .).(][ (10) 
ji UPCD ∂∂= .).(][ (11) 

 
By substituting equation (8) into (9), the following equation is obtained. 
 

}{][}{)][]][[][(.)}.({ 1 dXSdXABDCPCd ij=−= − (12) 
 
where [Sij] is the sensitivity matrix of the assembly variables and can be written as: 
 

][]][[][][ 1 ABDCSij
−−= (13) 

 
Based on the sensitivity matrix, the influence of each manufacturing variable on the 
assembly specification can be evaluated using Root Sum Square (RSS) statistical 
approach. The variance of the univariate normal distribution, which expresses the 
spread of the distribution, is determined using DLM method and computed by 
equation (14) [7]. 
 

∑
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222
.).( )(.).( σσ (14) 

 
In the above equation, σj

2 is the variance of j-th manufacturing. In the case of 
multivariate distribution, the variance of manufacturing variables is expressed as the 
variance matrix V, which presents the variance of each manufacturing variable along 
with the correlation between the variables [7]. It is assumed that there is no 
correlation between the manufacturing variables. Therefore, the variance matrix is 
diagonal and written as follows: 
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4 Bivariate Normal Distribution  
Brown estimated the concurrent variation limits of two assembly specifications 
d(C.P.)X and d(C.P.)Y by the following  equation [7]: 
 

T
ijij SVS ][][][][ =Σ (16) 
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The covariance matrix Σ for bivariate distribution of assembly specification is 
presented by: 
 

⎥
⎦

⎤
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⎣

⎡
=Σ

YXY

XYX

VV
VV

][ (17) 

 
The diagonal elements indicate the deviations of each individual variable while the 
off-diagonal elements describe correlation between variables. The eigenvalues of the 
covariance matrix indicate the magnitude and direction of greatest variations. These 
eigenvalues are principle variances that represent the major and minor diameters of 
the elliptic contour of distribution [3]. The eigenvalues of 2-order variance matrix are 
determined as follows: 
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Also, the rotation angle of principle axes to the y axis is given by: 
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The contour of equal probability can be presented by the following equation in polar 
coordinates (r,θ) [3]. 
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− θθθθ (21) 

 
Where n is the sigma-level of the process. The maximum normal-to-path error, which 
is defined as the maximum perpendicular distance between distribution contour and 
the nominal C.P. path, is estimated with standard deviation of ±3σ. For example, the 
distribution contour of C.P. at θ2=3° is computed and demonstrated in Figure 4. The 
maximum normal error is also illustrated in the Figure. 
 
5 Comparison to Monte Carlo Simulation 
In this section, the results obtained by DLM are compared to the Monte Carlo 
simulation. For this purpose, the Monte Carlo simulation, based on reliability of 95%, 
is performed with 400,000 samples of mechanism at each value of θ2 [7]. Figure 5 
demonstrates the comparison of DLM with Monte Carlo at θ2=3°. 
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Figure 4: Bivariate distribution of C.P. at. 

θ2=3° 
 

Figure 5: Comparison of DLM with Monte 
Carlo at θ2=3°. 

 
 

After evaluation of the maximum normal-to-path error at each value of θ2, the 
variations of the error for one cycle of motion is determined. In Figure 6, the 
maximum normal-to-path error using DLM method is compared to the Monte Carlo 
simulation.  
 

 
Figure 6: Comparison of maximum normal-to-path error using DLM with Monte Carlo. 

 
6 Multiple linear regression model 
A regression model that contains more than one variable is called a multiple 
regression model. In this paper, it is supposed that the maximum normal error 
mechanism is produced at θ2=3° which depends on the manufacturing variables. A 
multiple regression model which describes this relationship is [9]: 
 

∈+++++= KK XXXy ββββ L22110 (22) 
 
where y represents the maximum normal error, Xi represents the manufacturing 
variables, and ∈ is a random error term. In this method, βi coefficients are 
determined by changing manufacturing variables and calculating the maximum 
normal error at θ2=3°. These coefficients are obtained by 3072 combinations of the 
manufacturing variables and given in the following relationship: 
 

1p2 1.5068.69r3.340.35r0.05Error θβ ++++= (23) 
 
The valid-ness of the above relationship is verified by the normality test. The 
difference between initial errors and the errors obtained by equation 23 are 
computed. If the variation of the computed difference is normally distributed, the error 
estimated by equation 23 is valid. 
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In order to determined the percent contribution of each manufacturing variable on the 
error, βi are divided by the summation of βi and the sensitivity of each manufacturing 
variables is determined (see Figure 8). It can be observed that rp and θ1 have the 
major percent contribution. Thus, decreasing their tolerance limits can substantially 
decrease the error. Because of improving tolerance limits of angular dimension (i.e. 
θ1, βi ) imposes manufacturing cost with higher rate, r2 and rp are chosen for 
decreasing the error and the modified tolerance limits are reported in Table 2. 
 

  
Figure 7: Chart of Test accurate 

equation23 
Figure 8: Present contribution of 
manufacturing variables at θ2=3° 

 
Table 2. New nominal dimensions and tolerances of manufacturing variables (mm).  

Manufacturing Variables 2r  3r  4r  pr  β  1θ  
Nominal Dimension 250 400 25 104 80° 0° 

Tolerance ± 0.3 ± 0.2 ± 0.02 ± 0.15 ± 0.5° ± 0.5° 
Modified Tolerance ± 0.15 ± 0.2 ± 0.02 ± 0.07 ± 0.5° ± 0.5° 

 
Based on the improved parameters, the distributed of normal-to-path error at θ2=3° 
along with the variation of maximum error for whole cycle are computed and depicted 
in Figures 9 and 10, respectively.  
 

  
Figure 9: Comparison of  bivariate 

distribution of C.P. position at  
θ2=3°,after and before modify. 

Figure 10:.Variation of maximum error 
with modified and initial tolerances. 

 
 

7 Optimization of error and manufacturing costs 
A promising method of selecting part tolerances is assigning tolerances such that the 
manufacturing expenses are minimized. This can be accomplished by the cost-
tolerance function for each component. Chase et. al. [10] proposed the following 
general form for this purpose: 
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kB/tol A   C += (24) 

Where the constant coefficient A represents fixed costs. It may include setup cost, 
tooling, material, prior operations, etc [10]. The B term determines the cost of 
producing a single component dimension to a specified tolerance and includes the 
machine cost rate. Costs are calculated on a per part basis. In order to reach tighter 
tolerances, speeds and feeds should be reduced and the number of passes 
increased, requiring more time and higher costs. The exponent k describes how 
sensitive the process cost is to changes in tolerance specifications. In this study, 
optimized tolerances of manufacturing variables for minimized costs is obtained by 
considering equation 23 and 24 and finding the minimum cost for the given max 
error. For example, information of point A is presented in table 3. 

 
Figure11: Optimized max error versus minimum cost 

 
Table 3 Information of point A 

Manufacturing Variables 2r  3r  4r  pr  β  1θ  
Nominal Dimension 250 400 25 104 80° 0° 

Tolerance ± 0.15 ± 0.2 ± 0.02± 0.07 ± 0.5° ± 0.5°
 

8  Conclusion 
The Coupler Point (C.P.) position of a crank slider mechanism during one cycle of 
motion is considered as the assembly specification which has variations in two 
directions. The correlation between these variations also impresses the limit of 
variation. The bivariate distribution of the assembly specification is determined using 
the Direct Linearization Method (DLM). The valid range of DLM is firstly determined 
by means of the time-consuming Monte Carlo simulation and then the percent 
contribution of each input variable to assembly specification is computed by DLM. 
Thus, the most critical variables, which have the highest contribution to the variations 
of the assembly specification, can be recognized. By improving the tolerance limits of 
these critical variables, the maximum error of mechanism can be decreased 
significantly. According to Figure 10, tolerance improvements result in 17% reduction 
of the maximum normal error at θ2=3°. In addition, the curve which represents 
optimize max error versus minimum cost is derived based on the regression equation 
and the cost function. 
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