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Abstract: We investigate the effect of self-gravity on the equilibrium structure of a thick non-rotating disk 
around a central object by the self-similar method. We introduce three dimensionless variables 
Csg, Ct and Ck that indicate the relative importance of self-gravity, thermal energy and kinetic 
energy, respectively. We study the effect of each of them on the structure of the disk. Our self-
similar solutions show that the self-gravity modifies the structure of the disk. We find out by 
increasing the ratio of disk mass to the central object mass, the disk becomes thinner. Our results 
show that increasing kinetic and thermal energies have similar effects on the structure of the disk 
and make it thicker. 
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Introduction 
The dynamics of accretion disks in the context of 
high energy astrophysics have been studied by 
several authors [1]. The plasma processes in the 
vicinity of the compact objects are believed to the 
main mechanism for the generation of the energy 
in such objects [1]. If the central compact object 
has also an intrinsic magnetic field, then the 
plasma flow is governed by the structure of the 
magnetic field which arises due to the distribution 
of the seed field by currents flowing through the 
disks.  
The first analytical equilibrium solution including 
the conductivity of the plasma for a case of non-
rotating magnetized star accreting matter from a 
disk was obtained by Kaburaki [2], [3].  
Geometrically, accretion disks are classified into 
two categories: thin disks and thick disks [4]. For 
thin disks, a generally accepted model was 

proposed by Shakura & Sunyaev (1973), while for 
thick disks in spite of many efforts [5], [6] no 
standard model yet exists and many theoretical 
uncertainties remain about the nature, structure 
and stability of thick disks [7]. The study of thick 
disks is important since not only these structures 
could be formed in some systems like proto-stars 
or AGNs, but also they are theoretically so 
important because of their ability for providing a 
better understanding of thin disks and 
intermediate cases [4]. 
Self-gravity in accretion disks is effective when 
the mass of the disk is comparable to the mass of 
the central object or where the self-gravitating 
acceleration is not much less than the central 
object acceleration. Then the self-gravity cannot 
be neglected for the massive disks. Therefore, it is 
appropriate to consider the self-gravity when we 
are going to study the thick disks. Nevertheless, as 
the self-gravity enters the equations, they become 
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non-linear. To solve such equations, the self-
similar method could be useful and help us to 
study the problems with acceptable details 
especially in equilibrium states [8]. Pen presented 
a general classification of self-similar solutions 
for self-gravitating fluids [9]. Bodo & Curir 
computed the equilibrium structure of a self-
gravitating thick accretion disk by an iterative 
procedure, which produced a final density 
distribution in equilibrium with the potential 
coming from it [10]. They showed that the size 
and geometrical shape of the disk were affected 
by the self-gravity. 
Today, it is completely clear that the magnetic 
fields have an important role on the accretion 
disks. Magnetic fields could be involved in 
generating jets and bipolar outflows from disks 
[11]. Thick disks are also successful to describe 
rapid changes in radiation from X-ray sources 
[12]. Tripathy et al. investigated the dynamics of a 
thick disk of accreting magnetofluid. They 
considered a thick disk with finite conductivity 
around a compact object [12]. They found that the 
azimuthal current produced due to the motion of 
the magnetofluid modifies the magnetic field 
structure inside the disk. Banerjee et al. examined 
rotating thick disk equilibria in the presence of an 
external gravity and a dipolar magnetic field. 
Their solution showed that the pressure and the 
density profiles were strongly modified by a 
generated toroidal magnetic field [13]. However, 
they had not considered the self-gravity, which is 
so important in thick disks. Ghanbari & Abbassi 
studied the effect of self-gravity in rotating thick 
disk equilibria with using self-similar method 
[14]. Their solutions showed that the structure of 
the disk is modified by the self-gravity of the disk, 
the magnetic field of the central object, and the 
azimuthal velocity of the gas in the disk. They 
found that self-gravity and magnetic field from 
the central object could change the thickness and 
the shape of the disk.  
In this work, we investigate the equilibrium 
configuration of a non-rotating thick disk that is 
affected by its self-gravity. We consider a non-
rotating, non-accreting, stationary, axi-symmetric 
thick disk around a compact object owned a 
bipolar magnetic field. We write our equations in 
a non-relativistic domain neglecting viscosity. Our 
aim in this work is generally to understand the 
effect of self-gravity in thick disk's equilibrium 
structures. In the following section we bring and 
talk about equations governing a thick disk around 
a compact object and at the presence of a bipolar 

magnetic field. In the second section the final 
equations are solved by the self-similar method 
and the effects of some parameters are discussed. 
We present our results and some suggestions for 
future works in the Discussion and Conclusion. 
 

Basic Equations 
As we stated in the introduction, we are interested 
in analyzing the role of self-gravity in a non-
rotating thick disk equilibrium in the presence of 
dipolar magnetic field of the central accretor. We 
assume the disk as a non-rotating, non-accreting, 
flow around a compact object and at the presence 
of a bipolar magnetic field. The disk is considered 
stationary and axi-symmetric. We use a spherical 
polar coordinate system fixed on the central 
object. For simplicity, we ignore the influence of 
dissipative processes such as viscosity or 
radiation. Thus, our basic equations including the 
equation of continuity are 

0).( =∇ Vρ ,                                                          (1) 
the equation of motion(or Euler’s equation in this 
case) 

BJ)VV ×+Ψ+Ψ∇−−∇=∇
c

p ext
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the Maxwell’s equations 
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0=×∇ E ,                                                           (5) 
and the Poisson’s equation 

)(4)(2
extext G ρρπ +=Ψ+Ψ∇ ,                             (6) 

where V is the gas velocity, ρ and P are the gas 
density and pressure respectively. ψext denotes the 
gravitational potential of the external object and ψ 
is the self-gravitational potential of the disk. E 
and B are electric and magnetic fields, J is the 
electromagnetic current density and ρext denotes 
the central object density. In this configuration we 
chose dipolar configuration for the magnetic field 
of central stars which is confirmed with 
observations and also we ignore the magnetic 
field of the accreting materials compare to the 
magnetic field of the central compact object. We 
propose that these accretion disks are bathed on 
the poloidal magnetic field of the central star 
which is a good approximation for neutron stars 
and white dwarfs. 
It is difficult to find the solution of the set of 
equations in the most general form. Therefore, we 
need some simplifications. In this model we have 
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ignored the effect of viscosity and any heating and 
cooling mechanism. 
In order to do some simplifications we start with 
Maxwell equations. We assumed that the 
magnetic field of central stars is nearly dipole 
which it has a good observational background at 
least for neutron stars and white dwarfs. 
We take the components of magnetic field like 
Banerjee et al. [13] 

θcos2
3
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where B0 is the magnetic field strength on the 
surface of the compact object and R is the radius 
of the compact object. 
Combining the electric field components from (4) 
and the magnetic field from (7) and (8), we could 
find a relation between radial and polar 
components of the velocity, that is  

θθ cot2VVr = ,                                                     (9) 
Using relation (1) and relation (9), we could find a 
relation for θρv  
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where ρ0 and v0 are the density and the velocity of 
the gas at the radius of the disk ( dRr = ) and 
equatorial plane (θ= 2

π ). When n is a real constant 
chosen so that θρv vanishes as r approaches 
infinity and a is the ratio of the disk radius to the 
central object radius. 
If we derive the components of the current density 
from equation (3), we could see that the azimuthal 
component of the current density in the disk is 
zero (Jϕ=0) because of the bipolar magnetic field. 
Using above relations, Euler’s equation (2) gives 
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where  p̂ is the effective pressure which is 
defined by 

π
ϕ
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We have also Poisson’s equation that in spherical 
polar coordinates is as follow 
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Now, we introduce some dimensionless variables 
for simplifying our equations. 
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where Rd is the radius of the disk and Md 
represents the mass of the disk. p0, ψ0 and Md are 
defined as 
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By inserting these dimensionless parameters into 
equations (11), (12), (13), (15) and after doing 
some manipulations, we obtain three equations to 
be solved 
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where Ct, Ck and Csg are defined by: 
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These dimensionless parameters indicating the 
relative importance of the thermal energy (Ct) and 
the kinetic energy (Ck) respect to the gravitational 
potential energy of the central object. Csg is the 
ratio of the disk mass to the central object mass 
and gives the importance of the self-gravity. We 
can study the effect of each of them separately. 
 

Self-Similar Solutions  
Our basic equations are non-linear and we cannot 
solve them analytically. Then, it is useful to 
employ a method to investigate the solutions as it 
could eliminate the difficulties of solving the non-
linear equations. One of them is the self-similar 
method. In this method, we assume when one of 
variables changes, the functions behave similar. 
This method could be used when we are not 
interested in boundaries or where sudden changes 
happen. 
Since we are interested to study the equilibrium 
state, the self-similar method is a suitable one. We 
assume our functions have similar behaviors in 
every radius and we will investigate the solutions 
with respect to the polar angle. Thus, we consider 
the self-similar variables like below 
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To simplify, we define w(θ) as 
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Inserting these variables into our basic equations 
gives a system of ordinary non-linear differential 
equations for the four self-similar variables θV~ , θΨ
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θp~  and w. 
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Indeed, we need four boundary conditions to 
solve the equations numerically. All of the 
boundary conditions could find at the equatorial 
plane (θ= 2

π ). As we defined θV~  in (32), the 
boundary condition for this variable is: 
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For other variables, we need to use the conditions 
that were presented by Narayan et al. [15]. These 
conditions indicate that the smooth changes of 
pressure and polar velocity at the equatorial plane 
are: 
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Using these relations in the basic equations 
at 2

πθ = , we obtain the other boundary conditions 
as 
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We have a system of four coupled ordinary 
differential equations with the four boundary 
conditions all in one point (

2
πθ = ). It is suitable to 

use the ODIENT method [16], which is so 
efficient and popular to solve theses kind of 
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problems. Now, we are able to solve the equations 
and study the effects of the self-gravity, the 
thermal energy and the kinetic energy by giving 
different values to Csg, Ct and Ck. During solving 
the equations for different values of Csg, we 
noticed that the values of M

M d are limited by values 

of Ct and Ck. Increasing these two parameters 

leads to increasing M
M d . The ratio of the disk mass 

to the central object mass could at most increases 
up to 0.9. In Fig. 1, we plot the pressure, the 
density and the radial velocity profiles for 
different values of Csg. We can see that these 
parameters are sensitive to the influence of the 
self-gravity. Fig. 1 shows that the pressure and the 
density decrease as the self-gravity increases.  

 
 
 
 
a 

 
 
 
 
 
b 

 
 
 
 
 
 
c 

 
 
Figure 1. Variation of the pressure (a) , density (b) and radial velocity (c) for different values of Csg that represents the importance of 
self-gravity. θ indicates the polar radius in radiant. 
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Figure 2. Iso-pressure (a) and iso-potential (b) counters of the self-gravitating disk. 
 

Figure 3. Iso-pressure counters for different values of Ct that represent the effect of thermal energy. 
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Figure 4.  Iso-pressure counters for different values of Ck that represent the effect of kinetic energy. 

 
These changes are more noticeable in the polar 
regions. As it could be seen in Fig. 1(c), 
increasing the self-gravity increases the radial 
velocity. In Fig. 2, we plot the iso-pressure and 
iso-potential contours. We can see that the 
geometrical shape of the disk tends to become 
thinner for greater values of Csg. 
In Fig. 3, the effect of the thermal energy is 
shown. It indicates that the thickness of the disk 
increases by increasing the thermal energy (larger 
Ct). The same effect can be seen for larger values 
of kinetic energy or Ck in Fig. 4.  
 

Discussion and Conclusion 
In this paper, we study the effect of self-gravity 
on a non-rotating thick disk around a magnetized 
compact object. We ignored the dissipative 
processes such as viscosity or radiation. Since the 
considered disk is non-rotating, the radial and 
polar components of velocity are important and 
we cannot neglect them. The magnetic field has 
no effect on the disk because the toroidal 
component of the magnetic field is not created in 
the disk. We find self-similar solutions for such 
disks that show the effect of the self-gravity on 
the disk physical parameters and its shape. 
We find that the self-gravity can change the 
thickness of the disk especially near the poles. 
Fig. 2 shows when the self-gravity plays an 
important role in the disk (by increasing Csg) and 
the disk becomes thinner. Our results agree well 
with Ghanbari & Abbassi [14]; however, they 

considered the disk is rotating and neglect the 
radial velocity.  
We also find that by increasing the thermal 
energy, the disk becomes thicker Fig. 3. 
Since the rotation has an important role on the 
structure of the disks [14], it is better to study the 
equilibrium structure of the disks by including all 
components of the velocity. By this way, the 
effect of mass flow is included and it could 
provide comparing the results with the 
observations.  
In this work, we ignore the dissipative processes 
for simplicity. Finding more detailed results for 
physical parameters encourages one to consider 
radiation or viscosity. 
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