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Abstract— A novel discrete tracking algorithm for mobile 
user based on velocity estimation in microcellular urban 
environment is proposed in this paper. By partitioning the 
mobile path and defining each partition as a state, the 
proposed algorithm tracks the mobile user based on Hidden 
Markov Model (HMM). The Short-Time Fourier analysis of 
the received signal strength is employed to estimate the mobile 
speed. Based on averaged received power (local mean), 
pathloss, velocity estimation and using dynamic programming 
technique, the proposed algorithm predicts the next state of the 
mobile user. The proposed tracking algorithm shows good 
ability to predict user mobility behavior in urban area with 
multipath fading and shadowing phenomena.

Index Terms— Mobile Tracking, Dynamic Programming, 
Mobility Model, Corner Detection.

I. INTRODUCTION

Information of position and velocity of mobile stations 
plays an important role in offering efficient network 
controlling mechanisms and a variety of offered services in 
cellular networks. A reliable mobility-tracking algorithm is 
desirable to provide necessary positioning information and 
location-aware controlling mechanisms. In hot spots, 
information of user mobility can effectively reduce number 
of handovers and reduce waste of bandwidth due to 
unnecessary signalling. By means of mobility information, 
an efficient planning and usage of resources is possible in 
transport systems. Also, in case of a car breakdown or an 
emergency call, automatic monitoring of the position would 
be of great help for immediate assistance. Two quantities 
can be used to obtain distance and speed information; the 
received signal strength measured at the mobile station and 
corresponding propagation time. Both parameters are 
subject to strong irregular variations caused by multipath 
and shadow fading. In a tracking algorithm, mobility 
characterization model is needed. Construction of mobility 
patterns for analysis and simulation has attracted consider-
able attention in recent years [1-3]. Some of these models 
are based on Markov, semi-Markov model [1, 3], random 
walk or Brownian motion [1]. These methods can be useful 
for scenarios with high direction change which is not 
appropriate for urban environment. In which users are 
bounded to city buildings and tracking algorithms suffer 
from corner effect. In this paper, by using dynamic 
programming technique, a new tracking algorithm for noisy 
urban environment is proposed. By utilizing proposed 
averaged received power, pathloss, velocity estimation and 
corner detection algorithms [4], the proposed tracking 
algorithm estimates the location of mobile user

The paper is organized as follows. In section II, a propa-
gation model is presented. The discrete tracking algorithm is 
proposed in section III. Section IV determines relevant 
parameters and presents performance results of the proposed 
tracking algorithm, and section V includes conclusions. 

II. PROPAGATION MODEL

The propagation model discussed here takes into account 
correlated multipath fading, correlated lognormal shadowing 
and a distance dependant trend [5]. A model for the received 
signal (RS), ( )tγ is  given by 

( ) ( ) ( ) + (t)                          t s t r t ηγ = ⋅                                 (1)
where ( )r t  is the complex envelop due to multipath 
propagation and user mobility, which contains the mobile’s 
Doppler amplitude information and ( )s t  is the average 
received power (local mean) at the mobile station and (t)η is 

AWG noise with zero mean and a variance of 2

nσ which is 

added to the RS. ( )r t , ( )s t  and (t) η are mutually 
independent. ( )r t is defined by [6] 
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where fd is the Doppler frequency, iθ and iϕ are mutually 
independent random variables uniformly distributed 
over ],( ππ− , ai is the gain of ith scatter and K is the number 
of independent scatters (usually K=20 is sufficient to 
provide good approximation). The process ( )s t is a wide-
sense stationary log-normal random process, which contains 
distance dependent trend and log-normal shadowing. We 
denote its mean and variance by sμ and 2

Sσ , respectively. 
Shadow fading process is assumed to have the exponential 
correlation function (a first order autoregressive [AR(1)]) 
model proposed by [6] based on the measured auto 
covariance function of ( )s t in urban environments. Path- 
loss, sμ , which is the mean of ( )s t , decreases mono-
tonically with distance from the base station. Pathloss for 
microcellular structure at position d is modelled by [6]  

     

1Department of Electrical Engineering, Ferdowsi University, Mashhad, Iran 
2Communications and Computer Research Center, Ferdowsi University, Mashhad, Iran

(3)

978-1-4244-1645-5/08/$25.00  ©2008 IEEE 2631



According to [6], dimensionless parameter x0, the distance 
parameters 0, ,c cx y y and exponents , ,ζ η χ  are introduced. 
Corner effect could cause SΔ dB signal drop, in 0y  meters. 

0P is a constant that accounts for transmitted power and 
antenna gain. To suppress noise and interference terms, ( )tγ
is passed through a low-pass filter with a bandwidth-

maxBW f> ; since we are only interested in the Doppler power 
spectrum, which is narrowband and variable between 0 and 
fmax in microcellular structure. fmax is maximum possible 
Doppler frequency of channel. Note that shadow fading s(t)
varies very slow in comparison with r(t). After that we 
consider [ ]nγ which is discrete form of ( )tγ with the 
sampling rate of 1 2BW , where 

[ ]  [ ] [ ]   [ ]n s n r n nηγ = +                                              (4) 
An example of RSS in a microcellular environment is plotted 
in Fig. 1, for variable mobile speed when long-term SNR is 
20 dB. As it is seen, short term SNR is high near base 
stations. Long-term SNR is considered for 100 seconds 
observation. 

III. DICRETE TRACKING ALGORITHM

In the discrete tracking algorithm, mobile user’s trajectory 
can be modelled by means of hidden Markov model. In this 
case, mobile trajectory is divided into partitions with 
different lengths. Then each partition can be defined as an 
HMM state. By this assumption, each user has its own chain 
of HMM states. The probability of existence of user in each 
state is calculated by means of dynamic programming. As it 
was mentioned before, the information that is available from 
different observations (estimated velocity, acceleration, 
local mean, pathloss and corners positions) can be utilized 
for next state probability calculation. The structure of the 
proposed tracking algorithm is shown in Fig. 2. In the 
proposed method, the pre-processing block provides 
velocity, local mean, pathloss estimates and corner 
information. The outputs of pre-processing block are fed 
into HMM block to predict next partition (N) of mobile user 
location. In the following subsections, we describe each part 
of the tracking algorithm that has been shown in Fig. 2. 

A. Velocity Estimator 
Due to the time-varying nature of mobile communication 

environment, the signal properties (amplitude, frequency, 
and phase) will change with time. In cases where the signal 
can be modelled by sum of sinusoids like received band-
pass signal at a mobile (base) station, the Fourier transform 
of finite-length segments of the received signal yields 
valuable information regarding signal characteristics. 
Therefore, we use time-dependent Fourier transform, also 
referred as the short-time Fourier transform (STFT), to 
estimate the power density spectrum of the RS. The DFT of
finite-length time segments of the RS is obtained by banks 
of rectangular filters such that, each filter has different 
duration. The Fourier transform of segmented input iV is 
given by 
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Fig. 1. Example of RSS for a variable mobile speed, recived by base 
station (BS0 in Fig. 4). long term SNR = 20 dB for noisy RS.

Fig. 2.  Block digaram of tracking algorithm. P[n] is the recived signal 
strength (RSS) . 

where [ ]iw n  is the ith window with the length Li. An 
estimate of power spectrum PSD would be 

22
 ( ) 1 1( ) lim    ( )  

i

j
i

j
i iL i i

V e
t t

PSD E V e
L F L F

ωωω
→∞ Δ Δ

= ≈           (6) 

where tΔ is sampling period and the constant F is used for 
normalization to remove bias in spectral estimate [7]. This 
approximation is valid for large Li. If a rectangular window 
is used, the estimator for the PSD is called periodogram. 
Because explicit transform of the PSD estimate can be 
carried out only in discrete frequencies, we have 
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πω ω≈ = = −          (7) 

where Vi[k] is N-point DFT of [ ] [ ]iw n nγ .  If N is chosen to 
be greater than Li the appropriate zero-padding would be 
applied to the sequence [ ] [ ]iw n nγ . The maximum of 

i ( )PSD ω  takes place of the maximum Doppler frequency, 

which is proportional to the mobile velocity ( ˆˆ
dv f λ∝ ⋅ ) in 

which λ  is the wavelength. 
{ }iarg ( )d Max PSD

ω
ω ω=                                                        (8) 

Thus, the mobile velocity can be obtained from dω .

B. Averaged Received Power Estimator 
Because of the slow variation of shadow fading and path- 

loss, they are present only in DC component of the estimated 
power spectrum of the RS. In other words, local mean of the 
RS is DC component of the estimated PSD. For variable 
mobile speed, the duration of observation window (Li) must 
be constantly adapted and the rate of adaptation is critical for 
performance of speed and power estimators. To solve this 
problem, a bank of observation windows is used for 
periodogram estimation, which enables us to adapt length of 
smoothing window to the speed of mobile user. DC
component of estimated PSD is adaptively extracted from 
different filters. 
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where is is the estimated averaged power (local mean). 
Active smoothing window is switched to another window 
and duration of window is selected proportional to the 
inverse of estimated velocity.  

C. Corner Detection Algorithm 
The proposed corner detection method uses estimated 

velocity and average received power to detect corner effect 
in urban propagation environments. The corner effect refers 
to a sudden change in the average received power when a 
mobile station turns at an intersection. It seems that when 
there are no considerable fluctuations (multipath fading 
fluctuations are mitigated), differentiation between 
successive samples (DSS) of estimated local mean has 
corners information. Corner is detected if there is a 
considerable difference (more than cT ) at least for 
α samples.α  is selected proportional to actual corner width 
in the propagation area. This procedure is based on 
measurements of one base station. But detection can be 
performed via measurements of surrounding base stations. In 
this case, corner is detected if all of the surrounding base 
stations detect the corner by means of the proposed 
algorithm. In addition, we can improve the performance of 
corner detection algorithm based on velocity estimation 
scheme discussed in subsection A. The idea is, in order to 
change direction or turn at intersection of streets; the mobile 
user must reduce its velocity or stop in some scenarios, 
which can be traffic light, for instance. So information from 
speed estimator can be used to improve the performance of 
the corner detection method. Corner is detected if estimated 
DSS is more than a threshold (say cT  ) from surrounding 
base stations and if user is classified as a slow one. Because 
instantaneous velocity is not needed in the act of corner 
detection, we could use a velocity threshold Tv to change the 
velocity state.  

D. Velocity Profile  
A velocity profile based on specifications of propagation 

environment, limitations of user mobility and traffic 
properties is considered. The profile proposed in [5] is 
modified, such that it can be used as a velocity profile. This 
profile can capture a wide range of realistic user mobility 
patterns in urban areas. The velocity profile is calculated by 

where v(t) is in km/h, vs is initial velocity, vmax is maximum 
applicable velocity in urban areas, ve is the ultimate velocity 
in period of tΔ and t is in seconds. The user movements in 
streets are assumed one-dimensional. This assumption is 
made because the length of street is much longer than its 
width and to decrease computational burden. Note that in 
other literature [2, 3], multipath fading and shadowing are 

modelled as an additive Gaussian noise. It is clear that this 
kind of assumption or modelling is not appropriate for dense 
urban areas. Further more, due to variable nature of mobile 
velocity, a fixed length filtering cannot remove fluctuations 
of multipath fading [5]. In order to improve the accuracy of 
tracking algorithm, observations from neighbouring base 
stations are considered but tracking with measurements from 
only one base station is possible. The observation vector 
from three BSs becomes 

1 2 3[ ] [ ], [ ], [ ]] [ ] [ ] [ ]O μ S RT
sn p n p n p n n n n=[ = + + +                (11) 

where p[n] is RSS, sμ is pathloss model given by  Eq. (3), 
T

10 1 2 3[ ] , ,=10log  [ [ ] [ ] [ ] ]n s n s n s nS  stands for shadow-
ing vector, [ ]R n =10log10[ 1 2 3[ ], [ ], [ ]r n r n r n ]T specifies multi- 
path fading and [ ]n defines power of additive Gaussian 
noise of channel. Observations are processed by means of 
local mean estimation algorithm discussed in subsection B in 
order to mitigate multipath fading fluctuations. Also, in order 
to obtain an estimate of pathloss ( ˆ

sμ ) which is essential for 
tracking algorithm, we must smooth shadow fading by means 
of adaptive windowing scheme in which duration of 
smoothing filter is adaptively chosen proportional to the 
inverse of estimated velocity. Because of having low short 
term SNR for far base stations, specially after corners of 
streets, we use corner detection algorithm to switch to 
suitable observations in tracking algorithm. 

E.   HMM Block  
The goal of discrete tracking process is to find the highest 

probable location (partition) from a set of surrounding 
locations (partitions). For this purpose HMM is used to 
model the tracking path. This means that tracking path is 
partitioned and each partition can be considered as a state of 
HMM. Movement of mobile user along the tracking path, 
results in sequence of states. Discrete tracking algorithm 
aims to find the optimum sequence of states. In order to find 
the optimum sequence dynamic programming technique is 
used.  

Estimating the state transition matrix of HMM which 
determines the transition probability of discrete components 
is important. Effective parameters in determination of 
matrix dimensions are user mobility specifications, sampling 
period, corner position information and partition length. The 
observations of HMM model are estimated velocity and 
pathloss (which is obtained from the estimated local mean). 
In each decision-making stage, the probability of user being 
in each partition is obtained, with respect to the pre-
mentioned criteria. The partition with the highest probability 
is the most reliable location at which, user can be found for 
the next sampling period. The simulation area in tracking is 
shown in Fig. 4. The tracking path  has three parts: A, B and 
C. Regarding to pathloss estimation and corner detection 
algorithm for each three parts of the tracking path, 
estimation of next partition is being done separately. This is, 
because of the fact that, before reaching any corner, the 
probability of user being present at partitions of other paths 
is zero. According to the velocity profile and presumed size 
of partitions, the number of states is defined Nstate. [ ]

isP k

(9)

(10)
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shows the probability of occurrence of each state in kth

moment of ith state with sampling step ts and  

1
1
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j
P

=
=                                                                      (12) 

Probability of being in ith state can be calculated from 
transition matrix. The HMM chain model is shown in Fig. 3. 
The transition matrix is: 

1 111 1

1

[ ] [ ][ ] [ 1]

[ ] [ ] [ ] [ 1]

state

N state state state Nstate state

Ns s

s N N N s

p k p kP k P k

P k p k p k P k

−

= ⋅
−

       (13) 

IV. SIMULATION RESULTS

To evaluate performance of proposed velocity and local 
mean estimation, corner detection and tracking algorithms, a 
simulator for radio wave propagation in cellular system for 
complex urban structure is developed. The basic input data 
is: 1) processed map of simulation environment and 2) 
cellular network configuration. The software is capable of 
simulating radio wave propagation in micro-cellular 
structure based on Berg model by taking into account, 
shadowing and multipath fading [8]. Fig. 4 shows the map 
which is used in simulation. In our numerical experiment, 
LOS and NLOS scenarios are simulated by means of 
proposed simulation test bed for constant and variable 
speed. Typical maximum Doppler frequencies are 
considered in the range of 0-100 Hz. The normalized bias 

}/)ˆ{( vvvE − and mean square error MSE })/)ˆ{(( 2vvvE −  of 
the speed estimates are investigated as SNR varies in LOS 
and NLOS scenarios. The carrier wave length m3/1=λ , the 
correlation distance of lognormal shadowing mxc 20=  and 
path loss parameters are set according to [8]. Because short 
term SNR is high near BSs, we proposed SNR-balancing 
method to reduce the estimation error in situations that RSS
from more than one base station is available. So the 
estimated velocity of each base station is weighted 
according to its SNR. This technique significantly improves 
the performance of proposed method. So estimated velocity 
is calculated by 

1
ˆ ˆ[ ] [ ]

BSN

i i
i

v n v nα
=

= ⋅                                                          (14)  

where BSN denotes the number of surrounding BSs, [ ]î nv  is 
estimated velocity from ith base station and iα is weighing 
coefficient, which is calculated by 

1

[ ] [ ]
B SN

i j
j

i P n P nα
=

=                                                  (15)  

The estimated velocity from three base stations at SNR=20
dB (note that SNR is long term) is plotted in Figs. 5-7. As it 
is seen in Figs. 5-7, estimation error is negligible for SNR 
more than 20dB. Fig. 8 shows effect of proposed SNR-
balancing method. Averaged received power (Local mean) 
estimation results are given in Fig. 9-11. As it is seen 
estimation error is negligible, even in situations with low 
SNR (20dB). The std of shadow fading is changed, when 
mobile user turns at an intersection. This value is selected 
from  the  range  of   4dB  to 7dB.  In  simulations,  sampling 

[ ]iiP k 1 1[ ]i iP k+ +1 1[ ]i iP k− −

1[ ]iiP k+

2[ ]iiP k+

Fig. 3. Hidden Markov model chain of states 

Fig. 4. Simulation area 

Fig. 5. Velocity estimation for path A based on RSS of BS0.when long term
SNR= 20 dB.

Fig. 6. Velocity estimation for path B based on RSS of BS1 when long term 
SNR= 20 dB.

Fig. 7. Velocity estimation for path C based on RSS of BS2 when long term 
SNR= 20 dB.

Fig. 8. Velocity tracking performance using SNR-balancing technique for 
long term SNR= 20 dB.

2634



Fig. 9. Local mean estimation for path A based on RSS of BS0 when long 
term SNR= 20 dB.

Fig. 10. Local mean estimation for path B based on RSS of BS1 when long 
term SNR= 20 dB.

Fig. 11. Local mean estimation for path C based on RSS of BS2 when long 
term SNR= 20 dB.

Fig 12: Tracking performance for path A.

Fig .13. Tracking performance for path B.  

interval is set to 1ms. The total length of tracking trajectory 
is about 1.5km and the detection delay is measured in meters 
(m). In simulations, HMM observations sampling interval is 
set to 0.5 s.  The length of  each  partition  is  considered 7m,

Fig .14. Tracking performance for path C.

which is optional and can be defined according to the desired 
level of accuracy or to computational burden. In case of more 
accuracy, size of partitions can be shortened. Path A (350m), 
B (450m) and C (700m) are divided to 50, 65 and 100 
partitions, respectively. According to partition length (7m) 
and maximum speed for mobile user in urban area (30 m/s), 
the transition matrix is 5 5× . That means, in next decision 
making stage, presence of mobile user only in 5 partitions is 
probable. As it is shown in Fig. 3, the possible states can be 
remaining in the same partition, two partitions ahead and two 
partitions backwards. The estimated partitions for each part 
of tracking path are shown in Figs. 12-14.  

V. CONCLUSIONS

A new technique for discrete mobile user tracking is 
presented in this paper for urban environment considering 
multipath fading and shadowing. The proposed algorithm has 
been developed based on the velocity profile which is 
capable of capturing large range of mobility behaviors in 
urban areas. Employing dynamic programming, the tracking 
algorithm predicts the next partition of mobile user (location) 
based on proposed velocity estimation and corner detection 
algorithms. Simulation results show that the proposed 
algorithm achieves good performance in tracking mobile 
users in urban areas with complex structure.
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