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dynamical system (X, T') is a compact right topological group if and only if (X, T)
is distal, that is lim, T™ex = lim, T™ey, for some net {m,} in Z and for some
z,y in X, implies £ = y. The enveloping semigroup of a distal dynamical system

is called the Ellis group of the dynamical system.

I concerning any compact right topological semigroup S

An interesting pro
is the problem of characterizing its topological centre A(S) = {s € S; [, S — S
t — st is continuous}. For example, the enveloping semigroup X of any dynamical
system (X, T) gives rise to a compact right topological semigroup. Obviously, in

such a case, A(X) contains the set {T™ :m € Z}.

Let Z,T and E be the group of integers, the circle group and the set of all
endomorphisms of T, respectively. In his extensive work (3], Namioka studied

the distal flow (Z,T?) (under a certain group action) and by giving a concrete

representation, he identified its Ellis group with E x T and also showed that its
topological centre is equal to the set {(( )".z) :n € Z,z € T}. Also Milnes [2]
continued the methods of (3] and studied the Ellis groups of & wide varicty of distal
flows.

Following [2] and [3], we study the Ellis group T of a specific distal flow (Z, T¥)
by embedding it into E*=! x T, and we show that A(X) (for k # 1) is equal to the
set {()", ()", () ,2):in€Zandz€T)in EF-1 x T.

Milnes, in example 3 of [2], used the same flow, for the special case k = 4, to
give a description of a flow arisihg from the distal function f(n) = A" on Z, where

A € T is not a root of unity.

For a semitopological semigroup S, the space of all bounded continuous complex
valued functions on S is denoted by C(S). For f € C(S) and s € S the right
(respectively, left) translation of f by s is the function R,f = f or, (respectively,
Lsf = fol,). A left translation invariant unital C*-subalgebra F' of C(S) (i.e.,
L,f € Fforal s € Sand f € F) is called m-admissible if the function s +—
(T.f)(s) = u(Lsf) belongs to F for all f € F and p € S¥(=the spectrum of
F). If F is m-admissible then SF under the multiplication pv = po T, (u,v €
SF), furnished with the Gelfand topology is a compact HausdorfF right topological
semigroup and it makes S¥ a compactification (called the F-compactification) of
S.

Some of the usual m-admissible subalgebras of C(S), that are needed in the sequel,
are the left multiplicatively continuous, and the distal functions on S. These are
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denoted by LMC(S) and D(S), respectively. The norm closure of the algeb:
generated by the set {n — Ao AeTand k € N} of functions on (Z,+) we
called the Weyl algebra by E. Salehi in [4]. By giving a generalization of tl
weyl algebra to arbitrary semitopological semigroups, we show that the involve

algebras are m—admissible and distal.
2. MAIN RESULTS
2.1. The topological centre of Ellis groups.

Definition 2.1. Let A be a fixed irrational element of T (i.e. A is not a root ¢
unity) and fix & € N. Define 7': T* — T* by

‘N.AE_,EN_ ‘e .E».v = T\_L\u. - Lx».v

where for cachi=1,2,... k&

y; = AW :Eww.‘t.
; j=1
A scquence {z,} in a compact abelian group G with the normalized Haa
measure g is said to be uniformly distributed in G if for cach continuous comple
valued function f on G, :3218% Muw\u_ flz,) = %0 fdp. 1t is clear that ever,
uniformly distributed sequence in G is dense in G. Let e = (1,1,...,1), then fo
cach m € Z, T™(e) = (ADm AGm | am*y,

Lemma 2.2. The points T™(e) (m > 1) are uniformly distributed, and so densc
in Tk,

This lemma is proved easily by using a famous result of H. Weyl [5].

The next proposition, which verifies the distality and minimality of the latte

flow, is an easy verification:
Proposition 2.3. The flow (Z,T*) is a distal minimal flow.

If 0 € £(2Z,T*) and ¢ = lim, Mg, for some net {m,} in Z, by taking a subne
of {mq} if necessary, we may assume that lim, A™e = z and limg 7™ = 6i(n), fo
i=1,2,..,k — 1 and every n € T. Therefore o((wy,ws,...,wx)) = (21,22, Zk)
where z = 6;(A®) [Ti_, 61— (w; (), for i = 1,2,..,k — 1, (with 6o = idr ir
mind), and 2zx = Nzwn_ Ok—;(w;). These observations lead us to the fact that
each o € T corresponds to a k-fold (61, ...,0k—1,2) € EF~! x T. In fact we have

the following lemma:
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Lemma 2.4. If © : £(Z,T*) — E*~! x T is defined by ©(0) = (61, ...,0k1, 2),
where 0,0, ...,0k_1 and z are as given above, then © is an embedding isomorphism
into E¥~! x T.

Lemma 2.5. Let the mapping © : £(Z, T*) — E*=1 x T be defined as in Lemma
2.4. Let 0 € A(EZ(Z,T*)) and let ©(0) = (01,....0c-1,2). Then for each i =

1,2,...,k =1, 0; is continuous.

We are now sufficiently prepared for the main theorem on the topological centre
of ¥ = £(2,TF).

2 k=1

Theorem 2.6. For 1 # k€ N, A(S(Z, T*)) = ()™, ()", ...( )" z):n€eZ

and z € T}.

Proof. Let o = limg, mg, be in A(S(Z, TF)) and let the mapping © @ £(Z, T*) —
E¥= ' x T be defined as in Lemma 2.4 and let 6(a) = (0y,....0k-1, ). The continuity
of 0;’s (Lemma 2.5) implies that 6; = ()™, for some ny. na, .., 1—y € Z. We are
going to show that ()™ = ()™, for every j = 2,....k — 1. Fix p as an arbitrary
prime, then for n = ¢5 since (m)™e — ()™, we get m, = ny (mod p), eventually.
Hence for each j = 2,..,k =1, (m,)? = ny? (mod p), eventually. Since p was
an arbitrary prime, (mqs)? = ny?, eventually. On the other hand one can show
similarly that (ma)? = nj, eventually. Hence n; = n? for each j = 1,...,k -1, and

so o= (()™,( v:w, s vi?_iuv in which z = limg A™a. El

2.2. Weyl algebras.

Definition 2.7. Let £ = {T}, : LMC(S) — LMC(S);u € S¥MC}. Let Fy be the
set of all constant functions of modulus 1. For every k € N assume that we have
defined F; for i = 1,2,...,k — 1 and define Fy by

Fy={f€ LMC:|f|=1 and for every ¢ € £,0(f) = f,f, for some f, € F._1};

It is clear from definitions that Fy C Fy4, for all k € NU {0}. Let W; and

W be the norm closure of the algebras generated by Fi and U,enFr in C(S),

respectively.

Lemma 2.8. The set Fy is left translation invariant and it is also invariant under
%; in other words, Ls(Fi) C Fi and L(F) C F.

Lemma 2.9. All elements of F, remain fired under the idempotents of X.

Lemma 2.10. F, C D .

§popilegs

Wby
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Theorem 2.11. For every semitopological semigroup S, Wy, and W are m-admis:
subalgebras of D(S).

Proof. For the m—admissibility of Wy it is enough to show that it is left translatio
invariant and also invariant under £. Let (Fi) be the algebra generated by F
Lemma 2.8 implies that Lg((Fy)) € (Fx) and also S((Fy)) € (Fi). For ever
f € Wi there exists a sequence { f,,} € (Fx) which converges (in the norm of C(S)
to f. Let 0 € ¥ and s € S, then the inequalities ||L,(fn) = La(HIl € I = f
and [lo(fu) = o(N) < Ifu = fI imply that L.(f,) = Ly(f) and o(f,) = o(f,
respectively. Since for ench n € N, L,(f,,) and o(f,,) lie in (Fy), we have L,(f) «
Wi and also o(f) € Wy, It follows that Wy is m-admissible. A similar argumen
may apply for the m—admissibility of W. The fact that Wy and W are containe:

in D follows trivially from Lemma 2.10. C

Also we have the following proposition which generalizes, in part, a result of M
Filali.

Proposition 2.12. If R<s a countable discrete ring, then for cach character x o1
the discrete additive group of R the function x(q(1)), in which q(t) is a polynomia

with cocfficients in R, belongs to W(Ry, +) and is also a distal function.
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