STRONG IRREGULARITY OF BOUNDED BILINEAR MAPPINGS

H. R. E. VISHKI

ABSTRACT. In this paper first we give a lower bound for the topological centres of a bounded bilinear map, and then we characterize the topological centres of certain bilinear mappings, say Banach module actions.

1. PRELIMINARIES

Suppose that $f: \mathcal{X} \times \mathcal{Y} \longrightarrow \mathcal{Z}$ is a bounded bilinear mapping on the normed spaces \mathcal{X} , \mathcal{Y} and \mathcal{Z} and let \mathcal{X}^* and \mathcal{X}^{**} be the first and second dual of \mathcal{X} , respectively. The adjoint of f is the bounded bilinear mapping $f^*: \mathcal{Z}^* \times \mathcal{X} \longrightarrow \mathcal{Y}^*$ defined by

$$\langle f^*(z^*, x), y \rangle = \langle z^*, f(x, y) \rangle \ (x \in \mathcal{X}, y \in \mathcal{Y}, z^* \in \mathcal{Z}^*).$$

Continuing this method, the higher rank adjoints of f can be verified by setting $f^{**} = (f^*)^*$ and so on.

The mapping f^r will be considered as the bounded bilinear mapping from $\mathcal{Y} \times \mathcal{X}$ into \mathcal{Z} defined by $f^r(y,x) = f(x,y)$.

The first and second topological centers of f are defined as follows, respectively:

$$Z(f): = \{x^{**} \in \mathcal{X}^{**}; y^{**} \longrightarrow f^{***}(x^{**}, y^{**}): \mathcal{Y}^{**} \longrightarrow \mathcal{Z}^{**} \text{ is } w^{*} - \text{continuous}\}$$

$$\boldsymbol{Z}^t(f): = \{\boldsymbol{y}^{**} \in \boldsymbol{\mathcal{Y}}^{**}; \boldsymbol{x}^{**} \longrightarrow \boldsymbol{f}^{r***r}(\boldsymbol{x}^{**}, \boldsymbol{y}^{**}): \boldsymbol{\mathcal{X}}^{**} \longrightarrow \boldsymbol{\mathcal{Z}}^{**} \text{ is } \boldsymbol{w}^* - \text{continuous}\}.$$

When f is the product π of a Banach algebra \mathcal{A} , we usually show its topological centers by $Z(\mathcal{A}^{**})$ and $Z^t(\mathcal{A}^{**})$. It can be shown that π^{***} and π^{r***r} are really the first and second Arens products of \mathcal{A}^{**} which will be denoted by \square and \lozenge , respectively.

The mapping f is called (Arens) regular when $f^{***} = f^{r****r}$. The Banach algebra \mathcal{A} is said to be Arens regular if its product mapping is regular.

The bilinear mapping f is said to be strongly left (resp. right) irregular if $Z(f) = \mathcal{X}$ (resp. $Z^{t}(f) = \mathcal{Y}$). The subject of Arens regularity of bilinear mappings are investigated in [1, 2, 4, 5, 6, 8].

Key words and phrases. Arens product, bounded bilinear map, Banach module action, topological centre, second dual.

2. MAIN RESULTS

A bounded bilinear mapping $f: \mathcal{X} \times \mathcal{A} \longrightarrow \mathcal{X}$ is said to be approximately unital if there exist a bounded net $\{e_{\alpha}\}$ in $\mathcal A$ such that $\lim_{\alpha} g(x,e_{\alpha})=x,$ for all $x\in\mathcal X.$ We commence with the following result which describes the topological centres of such a mapping.

Theorem 2.1. For every approximately unital bounded bilinear mapping $f: \mathcal{X} \times \mathcal{A} \longrightarrow \mathcal{X}$ on normed spaces A and X, $Z(f^*) = X^*$ and $Z^t(f^*) = \mathfrak{M}_X$; In which, $\mathfrak{M}_X := \{x^{**} \in X^{**} : x \in X^{**}$ $J_{\mathcal{X}^{**}}(x^{**}) = (J_{\mathcal{X}})^{**}(x^{**})$.

Corollary 2.2. Let $g: \mathcal{X} \times \mathcal{A} \longrightarrow \mathcal{X}$ be an approximately unital bounded bilinear mapping on normed spaces ${\mathcal A}$ and ${\mathcal X},$ then g^* is regular if and only if ${\mathcal X}$ is reflexive.

The next result studies the strong irregularity of π_1^{r*} and π_2^* , in which π_1 and π_2 are

Theorem 2.3. Let (π_1, \mathcal{X}) and (\mathcal{X}, π_2) be approximately unital left and right Banach \mathcal{A} -modules, Banach module actions. respectively. Then

$$Z(\pi_1^{r*}) = \mathcal{X}^* = Z(\pi_2^*), \text{ and } Z^t(\pi_1^{r*}) = \mathfrak{M}_{\mathcal{X}} = Z^t(\pi_2^*);$$

in particular, π_1^{r*} and π_2^* are left strongly irregular.

As an straightforward application of the latter theorem we have the next one which is a

Corollary 2.4 (See [6, Corollary 2.4]). For the multiplication π of a Banach algebra $\mathcal A$ generalization of a result of [6]. having a right (respectively, left) bounded approximate identity, π^* (respectively, π^{r*}) is left strongly regular; that is, $Z(\pi^*) = A^*$ (respectively, $Z(\pi^{r*}) = A^*$.)

As another application of Theorem 2.3 we deduce the next result of [8], (which in turn is a generalization of [5, Proposition 4.5])

Corollary 2.5 ([8, Proposition 3.6]). Let (π_1, \mathcal{X}) and (\mathcal{X}, π_2) be approximately unital left and right Banach A-modules, respectively. Then the following assertions are equivalent:

- (i) π_1^{r*} is regular;
- (ii) π_2^* is regular;
- (iii) \mathcal{X} is reflexive.

REFERENCES

- 1. A. Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951) 839-848.
- 2. S. Barootkoob, S. Mohammadzadeh and H. R. E. Vishki, Topological centres of certain Banach module actions, To appear in Bull. Iranian Math. Soc.
- 3. H. G. Dales, Banach algebras and automatic continuity, London Math. Soc. Monographs 24 (Clarendon Press, Oxford, 2000)

- H. G. Dales and A. T.-M. Lau, The second duals of Beurling algebras, Mem. Amer. Math. Soc. 177 (2005), no. 836.
- H. G. Dales, A. Rodrigues-Palacios and M. V. Velasco, The second transpose of a derivation, J. London Math. Soc. (2) 64 (2001), 707-721.
- 6. M. Eshaghi Gordgi and M. Filali, Arens regularity of module actions, Studia Math. 181 (2007), no. 3, 237–254.
- 7. A. T. Lau and A. Ulger, Topological centers of certain dual algebras, Trans. Amer. Math. Soc. 348 (1996)no. 3, 1191–1212.
- 8. S. Mohammadzadeh and H. R. E. Vishki, Arens regularity of module actions and the second adjoint of a derivation, Bull. Austral. Math. Soc. 77 (2008), 465-476.
- ¹ DEPARTMENT OF PURE MATHEMATICS AND CENTRE OF EXCELLENCE IN ANALYSIS ON ALGEBRAIC STRUCTURES (CEAAS), FERDOWSI UNIVERSITY OF MASHHAD, P. O. BOX 1159, MASHHAD 91775, IRAN.

 $E ext{-}mail\ address: wishki@ferdowsi.um.ac.ir}$