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ABSTRACT

Numerical Simulstion of inverse heat conduction problem is con-
docted in one dimensional polar coordinate svstem. This somu-
iation 1% performed 1o order to properly determene the bowndary
condithon reguined Tor 2 obtaining . a specific forms OF a melal prop-
erties by heat treatment of 3 specimen in an oven. The determined
boundary condition is then used in the direct numerical simalation
of time dependent heat condoction problem 1o check the scoarscy
the mverse solution. The boundary condition swhich is proposed
by the inverse method s found o be appropeiste for prodiocing
the destred metal property.  Therefore, in this study the oven de-
sirahle comdition which produce 2 known metal properties s ob-
tained. The conditions oblained by the inverse sumerical simu-
Estiom can - be wsed in the heat tresiment of 5 metal contained in
an oven under controfled boundary conditions.  This shews the
srique. ability of numerical modeling o determine exact applica-
ble conditions for an oven used for the heal trestment of meials
The tradibonal method ases the tnal snd ervor approach which is
very lime conguming snd cost-demanding. 1o the inverse simo-
iaticn: part of this study » prescribed and a Neomann bowndsry
condition are imposed at the inlet boundary of the rod while in the
direct simaudation a prescribed boundsry condition at the outler and
a null Neumann boundiry condition i the inlet are imposed. The
spatial derrvatives are caloulated using a compact fimite difference
scheme. Computation are sdvanced in time using compact third
order Runge-Kutta scheme, The nuomernical results are followed
by the discusdion for the heat trestment of an allov steel rod.

L. INTRODUCTION

A computerized method besed on a phenomenological model of
the kinetics of transformations taking place under non-isothermal

conditions for simulating the metalhargical processes occuming dur-
mg the hardening and temnpering of stecls was studied by Rexi
and Gergely {11 The proposed progrim was Toimnd to be sl
able for consfracting new-type COT-dizgrams related 1o different
workpiece geomeétnes.. Transformaton kinetics of vanous phases
were modeled thermodynamically by Umemots e al. [2] This
wis performed 0make gusntitative prediction of microginsciune in
HSLA steeds produced by isothermal or confinuous cooling irans-
formation. They studied five different Kinds of phases namely,
polygonal ferrite, Widmanstatten ferrite, pearlite, bainite and manien-
stte, and ten alloying elements, Detatls of the involved ransfor-
mation kinetics were studied by meant of numerical simulstion,
The effects of work-hardening of sustenite on the noucleation and
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growth rates of various phases were discussed and & mathematical
model of ransformation Kinetics from work—bardened austenite
was also presented. Suchirg {3} developed 2 mathematical maode]
foxr predicting phase wansformation of hypoestectoid steels dus-
mg continsous conling, The model contains only & small nam-
ber of expersmental parameters s a5 10 be used in wide ranges of
iemperature and chemical composition. Computer simulation of
sucrostructural changes and the relasionships berween microsorsc-
ture and mechanical propenties of bot rofled steel prodocts has been
studied by Kwen (4], A acw technology emenged from the maodel-
ing studies, atfempiing to predict the microstructural chasges oc-
cimng durmg hot rolling and coolmg of stecls and to conirol thesr
mechamical properties so that producton was camed out under the
optimum processing condition,  This computer aided prediction
and comtrof lechnology = perfformied by means of the mathesat-
w3l models based on physical metallorpy, Kurpisz-K Nowak-A)
[5] ivestigsted the imverse problem of the fempersture and heal
flux prediction on the surface of a heat conducting body. Since the
problem belongs to the ill-posed, the method of solving the bound-
ary problem as well as the method of stabiliring the resulis of cal-
culations were used, The boundary element method was apphed o
salve. the boundary problem., To obtadn stable resalis & combined
Tutore steps” and regularuation method were spplied. A mumen-
cal example was given in the paper which ensure the stability of the
results. In the corrent siody, the wverse heat conduction problem
i% solved by means of sumerical dmulation. This is 1o perfonned
1o obtain & boundary condition which is under control in 2 resl heat
treatment process. The compact finite difference scheme of Lele
{67 is used w caleulate the spatial derivatives and a compact thind
order Runge-Kotta scheme of Wray [7] is used for the time ad-
vancement scheme. The results indicates that the method 15 quite
efficient in determining 4 proper boundary condition for the rod
swrface. The oblained boundary condition 5 used in direct heal
conduction peobliem o venly the resulfs,

2. GOVERNING EQUATIONS

Time dependant heat conduction problem in one dimensiona] potar
coopdinate sysiem 15 descnbed by the following egoation.

or _ad or ;
i riv Br )

where ce 15 thermal diffesivity, Since the boundary condition along
the rod is symmeirical any change in azimuethal direction is ig-
pored. The temperature vanalion in longitudies! direction = ot
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studied. These indicates that the compulational domain 1¢ the ra-
dius of a rod ender investigation. An exact condition 1o apply @ rod
placed in an oven used for the therma! treatment which produce a
desirable mechanmical property . al the center of the rod 15 sought.
The desirable condition corresponds 10 the tempernture-time his-
tory which 15 mot applicsble in an oven of heat treatment. However,
the condition can be maposed as a boondary condtion in & almer-
ical simulation of inverse heat condoction problem. This produce
& proper boandary condition that can be applied in practice. Ix no-
merical simbdation of deect heat conduction problem the obtaned
boundary condition 15 used o check the scourscy of the results,
That is 1o verify the temperature-time history a1 the center of the
fod used az @ boundary condition in the inverse simulation.

A INITIAL CONDITION AND BOUNDARY CONIMTION
OF INVERSE PROBLEM

The governing equation {Bg. - 2) is first order in ime and seconid
order in spece. This indicates that one imibial condition and two
boundary coaditions are reguired o perform the numerical suno-
lation. In inverse part of the simulstion. which produce lempera-
ture for whole of the domaein inciuding the surface temperature of
the rod, two boundary conditions are impaosed at the cenler of the
roif, They are Dirichbet and Neumana boundary conditines. The
Danichlet bowndary condition pertamns o the lermperature—tome his-
wory and the Nevmann boundary condition corresponds 1o the rate
of change of tempersture are:

Tir = 0,8) = r{f).

Mir=0.4 .

o
The mom temperature is wsed to set the initial condition of the nod,
That 1%
Tirt =0) = gir).

4. OVEN TEMPERATURE PREDICTION

The balance of energy &t the surface of the rod subjected to both ra-
dizion and comvection 15 used to determine the oven temperatre.
This is the oven temperstare which Can be used inoa real praciical
work: The esergy balance siates that

TSR0 o MT(RA) ~ Tult) + o(TRA) ~ TAL))

¥4
where Too (1) 15 the oven temperaiuce Bme history. Solutios of the
inverse heat conduchon problem shows that all werms in B 4 are
known excepi T (£). This is a polynomial of the fourth order and

£ INITIAL CONDITION AND BOUNDARY CONDITION
OF THE DIRECT PROBLEM

In direct part of the simulation, the sccuracy of the results obtained
in inverse stmufanion s venfied. The compitational domain oon-
ains the rod ceater while the rod surface is not inchuded. In other
words, the sod's: surface lemperature % 1aken inlg account &%
Danchlet type boundary condition. Due to the symmetnic condition
at the rod center anull Neomann bousdary copdition s apphed as
before. Therefore, the Boundary conditions gre

Tir= Rt} =t}

T {r =0, §] _

bl <
Temperature distribution oblained af the final stage of beat treat-
ment is considered as initial condition in the direct simulation.
That is

.

Tir.t =T} = g{r).

6. NUMERICAL MODELING OF SPATIAL DERIVATIVE

The detaifs of the pumerical methads gsed o solve Lhe governing
equation I _ subject fo their boundsry conditions are described.
The spatial derrvatives are computed using the Padé { compact )
finkte difference scheme developed by Lele (6] He introduced the
st derivative of T{r} implicitly scoording o

F i ¢ + 2
ﬂT} -1 +Tj +ﬁ1}+k - L—r{ﬂq-i - Ti-1) +
do— 1
AT {Tjea — Tyi-a), {3}

where 3 prume denotes the firsi devivative, J represents the grid
pumber (0 < 3 < J) and Ar = L, fJ. By seiting o = 1/4 or
@ = 13 a fourth-order or sixth-order accurate scheme is obtained.
Al the streamvwise boundanes (g o ) = Dand § = J) animaplicn
ome-sided, third-order derivative approcomations is esed:

T x 1
To+ 2T, = ﬁ;{mﬁTu + 4Ty + T3), {4)

arut y
Ty 2., = i’:{;{ﬁfi - 4Tz = Ti-a). (5}

At the vicinity of the boundarv {fe.g. #tj = 1land j = J — 1)
the general form of the first derivatrves (BEq. (315 vsed with o =
1/4. Lele (6] discussed that replacing of o by a = {16a
Fi0a — 1) m ) = Tand §j = J— 1 punmniees the siahil-
iy and nmnencal conservation of {9/t )u = {3/ )T {u). This
s taken indo account here. Figure 1 shows the accuricy of the
Padé fimie difference scheme for the first derivative of T{r] =

i {:‘:,1 Tk} exp{2mikr} R} + c.c. where c.c. denotes 3 com-
plex conjugate. The Padé finite difference scheme is an implici
scheme. Bt is expecied o realize a

third order accurate scheme af the boundanes and a sixth order
accurate scheme Tar from both boundaries (e.g. ot r = R/2} Fig-
ure 2 shows the order of accuracy. The figure clearty indicates the
third, fourth and the sixth order of accuracy. for the first dertva-
uve approximatons using Eq. (4) &1 the boundanes and Eg. {3)
with o = 1/] and & = 1/4 at r = K2 (which is far from both
bewsndarics |

BEguation {6) represents the second derivative of T'{r), which
15 2 family of fourth order socurate Padé finite difference schemes,

41 - o}
3&rd

100 = }
W{T—i — 2y +T; -1} {f}

WHEre o = : Al the boendaries, one-sided, third order schemes
are used. They are:

ooy + T, + 0T, = (Tjos — 205+ Thii) +

0 (7] ]_
To + 1Ty = (15T~ 2T + BT - T3}, (7)
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Figure |: First derivative approximation of T'{r;} ecing sixth crder
Pade iimke difference scheme psing N = 64 R = 1,0 < 5 < 128
and Tr;) = T4 0, Tlk) exp(2mikr; /R) + cc..

B
w HE 1
T_; +11TJ_| = F{lﬂ; =BT ey 15T 5 '"'T_.r“-.]_.l. {8}

Taking the first order derivative from both sides of Ey. (4} gives

+ i 1 i ; '
Tu- +2'T| = Ef—ﬁrq +4T1 "!'T;}, {9
which simplifies io
T, 42T, = ;—fT;, + ﬁl{fé + 4T +T2).

Substituting the left-hand-side of Bg, (4) (using o = 1/4) for the
terms in the parenthesis of Eq. (10} forms the following eguation.

3 4T

Ar dr 2.—1 o

Eguation (11 is used o1 the inlet boundary of computaticesl do.
main i€, 51 the rod cemter. In the immediate vicinity of the boand-
anes {at § = 1and § = J - 1). the sccond—order compact finite
difference scheme Eq. (377 i used with o = 1/10. Figure 3 shows
ik order of accuracy Tor the second onder Padd fmiie difference
scheme st boandaries and ot v = Rf2 It clearty indicates that the
numerical scheme is third order acturate at the end boundaries,
and fourth onder sccurste af r = R/2. The compact finite d&if-
ference scheme is an implicit scheme, hence the hiphest onder of
accuracy can be obluned at the furthest distance from both bound-
anies where the lower order scheme &re used.

Ts +20 = e fTa —T5). (FE)

!{r =i =

7. TIME ADVANCEMENT SCHEME

A compact. third order. Runge—-Kuotts time differencing scheme de-
veloped by Weay [ 7] i oted 1o advance the computation in time,
Apphcation of the time advancement swheme W the following model
Egeation

dufdi = Ria) (12}
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Figure 2: Onder of accuracy for first derivative spproximation as-
g Padé finite difference scheme.
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Figure 3: Urder of acceraty for second derivative approximation

gsing Padé finme difference schieme.
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Table |: Third order Runge—-Kutta time advancement scheme [7].
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Figure 4: Order of time advancement scheme for da/dt = —u{l)
with u{0} = 1.

it performed 1a three sub-steps according 1o Table: 1.

The table shows that the time advancement of Bg. (12} by one
fime increment (Af) requires computstion of the nght-hand side
{f}inthree successive secb—time—steps. In cach of these sub-steps.
me {1} is incremented by {4 i} AL and w3 accumuilated by
inear combinanon of i sssociabed with the current time level and
that of the previows sub—tme—siep. Kesulls in the second column
of the third sub-time-step 1 regarded 28 solution incremented by
At

The coefhicien used in the me adancement scheme (op, d;)
can be obtaimed using the Taylor series expansion for B and R
and equating the terms of hke orders, This leads to

g t+atoatdi+datdy = 1,

iz d e 1

e ] e 1 4 o = -
n-::+l=:ln1£ + o) el +£=1] 5
i 1

Ger+afe el + =W edds = =,
Cx 3

i

L T ] = E

There are twn parimeter famihes of solutions 1o the preceding sel
of equations. . The scheme will be self-siarting if ) = 0. One
parameter famahes of sodution to the set of equations is,

ey = 815, dy =1
cy.= SF E2, dy = 17760
oy = 3/4. dy = —~5/12

A test case i performed to verify the order of accuricy for the
time advancement scheme. The equation

du

di

had sy enact solution of w{f) = ¢ when the imiial condition 5

set io w{l} = 1. Hence. the right hand side of Bg. (13) and the

initial condition w(0) = 1 are used o solve for w(t) atf = 1

oxing different time increments. The maximum ertors between the

munerical resulis and the exact solution are shown in Fig, 4 which
clearly indcates that the order of accuracy is approuimately three.

= —ufl} (13}
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Figure §: Temperalure—fime trace in both inverse and direct heat
conduction simalation for the test case of T'{r, £} = 300+ +4ar”

8. CODE VERIFICATION

The accuracy of the resalis are venbed using an &xact soloton of
the governing cquation. T(r, ) = 300 + £ + 4ar” is used as the
sodution of Bg 2 witha = . This con be used as o means of
verification prosading thar the boundary condition and initial con-
dition are prepared wsing the exact solution. The resulis st any
time level of the similation can be sitessed. The application: of
null derivative boundary condition can also be venfied by aking
the rate of femperature distnbotion & (r = 0. Figure 7 shows
the lempersture distribution at different time levels. The disriba-
o corTesponds to f = . 15 used as sn inital condition | inverse
amulation. Boundary condition at v = {13 shown in Figure 5
which relates to the fist line. Simce the difference between the
first two lines of this graph can not be distinguished, the spplica-
o of pell derivative boandary . condition is assessed.  Solution
of the heat conduction prablem in direct manner needs the speci-
frcation of boundary condibion at {r = R}, which s lemperature
time history. and initiad condition at § = T, which is temperstore
iimbation. Taking the ohaimed emperalure e race and tem-
perature distnbution just obtained one can: sodve hest condoction
probilem in direct manner and check the lemperaline time race &l
mad center. The simmalation in this way peeds pegative value for the
tomee increment and the same time step as we use i nverse mod-
ehing. Temperature disinibution obtained to be exactly the same as
shown by figure 6. Temperature fime history obizined is the same
as jllustrated by Rgire 5.

9. EXPERIMENTAL RESULTS

An experimental dafa roezsured o the rod center of 2 steel siab g
wied 1o predict the surface rod lemperature and oven room tem-
perature.  The data, shown in figure 8, represents the boundary
condition which is regarded as linwe temperature trace. Since the
trme Increment in the daia file is different from the time increment
needs by numerical simalation, data are interpolsted by Hinear in-
terpolation In the inverse part of the pumerical simulation the time
trace al the rod surface and the oven emperature sre calculated and
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Figure 6 Temperature distribution in divect héat conduction simn-
lation for the test case of T'{r, #) = 300 + ¢ 4 dar®

shown in the figore as the middle and 10p corve. Temperature dix-
tributions: in the rod =t different time levels are shown o fgure
%, Even throagh the use of experimental data sy inverse problem
can be verified. Taking the last distnibution a5 an initial condition
ins the direct approach assd using the lemperature Hme Tace st the
e rod surfsce o the boundary condition & direct approach can be
applied and the temperstare time trace st r = 03 justified agains
the boundary condition of nvérse approach.  The results shows
that the ioverse and divect modefing of hieat condoction probilerm
are performed appropristely and the proposed approach of imple-
menting the numerical model can be extend to the cases whers the
chanpe in thermal diffusivity i3 ignored

16, CONCLUSIONS

Numercal Simalation of mverse heat conduction problen: is con-
ducted in one dimenzsions! polar coordinate system. This sl
ton is performed in order 1o property determine the boundary con-
difion required for obtasaing a specific property of & metal onder
the heat restment operation in an oven, The boundary condition
whnch is proposed by the inverse method is found o be appropri-
ate for prodecing the desirable metal property. Therelore, in this
study the oven comndition which prodiace a known metal properties
is obtained.  The conditson 35 then used for the hes! treatment of
2 metal contzined in an oven. This condition can be controlled in
aregl practice. The simuiation shows the power of numencal mod-
eling 10 determiine exact applicable conditions for the heat tres-
ment of 3 specimen in an oven. The traditions] method wées the
trial and error approach wiuch 15 very time consuming and cost-
demanding. - The spatial derivatives of this simulation are calcu
lsted using 4 compact firdte difference scheme. The time advance-
ment of the simulation is performed using the compact third o-
der Runge—Kutta scheme.  The determined boundary condition is
thea used in the direct nomerical simulation of e dependant heat
conduction. This is performed to check the accurscy of the inverse
scfation. The resolts indicates that the method is guite efficient in
determining & proper boundary conditton for the rod surface.

q & ; ; ; I r L]
Figure 7: Temperature distribution o inverse heat conduction sim-
ulation for the test case of T'r, 1) = 300 4 ¢ 4+ 4o’
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Figure 1 Temperature-time trace sand oven temperaturs history
i hoth inrverse and direct hest condisetion simuoistion of 2 steed rod.

Figure % Temperature distribution of mverse heat conduction sim- Figure 11: Temperature distribution of direct heat conduction sim-
alation for 4 steel rod alarion for o steel rod
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