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Abstract: In this paper, the flow instabilities during the rise of a single bubble in a narrow vertical tube 
are studied using a transient 2D/axisymmetric model. These instabilities include the oscillation of the 
bubble shape and formation of a wake behind it. In the model, the Navier-Stokes equations in addition to 
an advection equation for liquid volume fraction are solved. A modified Volume-of-Fluid (VOF) 
technique based on Youngs’ algorithm is used to track the liquid/gas interface. The numerical results are 
validated by a comparison with available measurements. The effect of different parameters such as tube 
and bubble diameters, and liquid properties are investigated. 
 
1. Introduction 

The dynamic behavior of two-phase flows is of great importance in various processes ranging from 
engineering applications to environmental phenomena. The presence of air bubbles in hydrodynamic 
systems often reveals many undesirable effects such as early erosion, loss of efficiency or flow 
irregularities.  Bubble oscillations are complicated phenomena that include the bubble rising trajectory 
and shape instabilities as well as the associated velocity and pressure fluctuations.   

If a large bubble is confined in a narrow tube with a comparable cross-sectional diameter, the bubble 
will rise along the tube centerline, and path instabilities that might occur in unbounded domain will not 
appear. The problem seems to become somewhat simpler without trajectory oscillations and is therefore 
often neglected by researchers. Typically, for a large bubble in a narrow tube, a ‘slug flow’ will develop. 
Most studies on slug flows have focused on terminal velocity, steady shape and drag force. In a recent 
study [2], a universal correlation for the rise velocity of a long gas bubble in stagnant fluids contained in a 
vertical tube was obtained based on data collected from published literature. The velocity field in the 
liquid around the bubble has been investigated using Particle Image Velocimetry (PIV) by some 
researchers [3-4]. However, due to experimental difficulties, velocity profiles in the gas phase were 
seldom available. In the case of numerical simulations, the momentum equations and hence flow 
calculations were often ignored in the gas phase due to the large density ratio between liquid and gas [5]. 
Polonsky et al. [4] reported the oscillatory motion of the bubble bottom for a long gas bubble rising in a 
vertical tube while the nose of the bubble retained its shape. The amplitude of oscillations was found to 
increase with the bubble length, while the frequency remained constant.  

In this study, the flow instabilities during the rise of a single bubble in a narrow vertical tube are simulated 
using a transient 2D/axisymmetric model. A modified Volume-of-Fluid (VOF) technique based on Youngs’ 
algorithm is used to track the bubble deformation. To validate the model, numerical results are compared with 
those of the experiments for terminal rise velocity and bubble shape [1]. The velocity fields within the bubble 
and in the surrounding liquid are also examined and compared with those of the experiments [3] and other 
reported numerical results [5]. The effect of different parameters such as surface tension and viscosity of liquid 
are also investigated. 

 
2. NUMERICAL METHOD 

The main issue regarding the developed model is the advection of the bubble interface using VOF 
method. In this section, we present a brief account of the numerical method. The flow governing 
equations are: 
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where V
v

 is the velocity vector, p is the pressure and bF
v

 represents body forces acting on the fluid. The 
bubble interface is advected using VOF method by means of a scalar field f whose value is unity in the 
liquid phase and zero in the gas. When a cell is partially filled with liquid, f will have a value between 
zero and one. The discontinuity in f is propagating through the computational domain according to: 
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For the advection of volume fraction f based on Eq. 3, different methods have been developed such as 
SLIC, Hirt-Nichols and Youngs’ PLIC [6]. The reported literature on the simulation of free-surface flows 
reveals that Hirt-Nichols method has been used by many researchers. In this study, however, we used 
Youngs’ method [6], which is a more accurate technique. Assuming the initial distribution of f to be 
given, velocity and pressure are calculated in each time step by the following procedure. The f advection 
begins by defining an intermediate value of f, 
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Then it is completed with a “divergence correction” 
nn fVtff )(~1

rr
⋅∇+=+ δ  (5) 

A single set of equations is solved for both phases, therefore, density and viscosity of the mixture are 
calculated according to: gl ff ρρρ )1( −+=  and gl ff µµµ )1( −+= , where subscripts l and g denote the 
liquid and gas, respectively. New velocity field is calculated according to the two-step time projection 
method as follows [6, 7] 
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(8) 
The continuum surface force (CSF) method [6, 7] is used to model surface tension as a body force ( bF

v
) 

hat acts only on interfacial cells. Pressure Poisson equation is then solved to obtain the pressure field (Eq. 
7), Next, new time velocities are calculated from Eq.(8) by considering the pressure field implicitly. 

 
3. RESULT AND DISCUSSION 

To validate the model, the results of simulations for terminal rise velocity and bubble shape are compared 
with those of the experiments. The measured data performed by Grace [1] for air bubbles in water is given as a 
diagram shown in Figure 1. The results of the model, shown in the same Figure, are predicted in the same 
region where observed by experiments. As seen from the figure, increasing the bubble diameter increases the 
rise velocity up to a certain limit after which the bubble starts to oscillate. In this regime, the rise velocity 
remains nearly constant. Further increase of the bubble diameter changes the deformation behavior to the 
spherical cap regime where the rise velocity again increases with diameter. The default material properties used 
in the simulations are given in Table 1. Bubbles with diameter ranged from 0.8 mm to 10 mm are simulated; 
larger ones tend to break up before they reach their terminal velocity. As it can be seen from Figure 1, for the 
bubbles smaller than the 0.5 mm, there is an increasing deviation of simulated to measured velocities, which 
occurs mainly because of the so-called parasitic currents. These currents are due to inaccuracies in the 
calculation of surface tension forces, in particular because of errors in the calculation of the interfacial normal 
vector and curvature.  

Next, we studied the flow instabilities that occur during the rise of a bubble (20 mm in dia.) in a narrow 
vertical tube. Figure 2 displays the shape oscillation, velocity distribution and flow streamlines for this case. 
The wake formation and flow recirculation behind the bubble are clearly visible in the 
figure. Driven by the buoyancy force, the bubble rises rapidly after its release. It is deformed from the initial 
spherical shape to the final bullet-like configuration. The bottom of the bubble moves rapidly upward and 
develops into a concave shape. It rebounds downward immediately into a convex shape. This up-and-down 
oscillatory movement of the bubble bottom continues as the bubble rises with decreasing amplitude. The top of 
the bubble (or bubble nose), on the contrary, remains a spherical cap shape with very little deformation as it 
ascends. 
A better view of the bubble rise and oscillation is shown in Fig. 3 where a 3D view of the phenomenon for 
another case (ethylene as liquid) is displayed. A detailed quantitative comparison of the model predictions. 
predictions and experiments [3] is given in Fig. 4 for an axial location just above the bubble; the two results 
agree well in this region. The axial velocity profile in the fully developed falling film beside a rising single 
bubble is shown in Fig. 5 along with the theoretical profile developed by Brown [8] and the numerical 
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predictions obtained by Bugg et al. [5]. The analysis of Brown [8] and the numerical model predict a gas–liquid 
interface location of r/R=0.75 and r/R =0.76, respectively. Finally the effect of different parameters on the 
oscillatory behaviors of bubble velocity and shape are investigated. Figures 6 and 7 show the variation of the 
rise velocity versus time for water and ethylene, respectively, where db/D was 0.88. It can be seen that for the 
case of ethylene with a higher viscosity, the amplitude of oscillation is decreased as the bubble rises in the 
narrow tube. This implies that liquid viscosity has a damping effect on the oscillations, as was expected. The 
gas viscosity plays a negligible role in the bubble motion and is; therefore, can be ignored. 

 
Conclusion 

In this paper, an axisymmetric VOF method was used to simulate the dynamics of a single gas bubble rising 
in a narrow vertical tube. The model was validated by a comparison between numerical results with available 
measurements for the bubble deformation and velocity during its rise in a liquid. The velocity field have been 
investigated and analyzed; the results obtained in the present study are in close agreement with experimental 
results. 
 

  
Fig 1. A comparison between the results of simulations 

with those of the experiments [1] for terminal rise 
velocity against initial bubble diameter. Based on the 
experiments, the rise velocity should be located in the 

region surrounded by the lines. 

Fig 2. Shape oscillation, velocity distribution, and flow 
streamlines during the rise of a 20 mm dia. bubble in a 

narrow vertical tube. 
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Fig 3. 3D shape oscillation during the rise of a 20 mm 
dia. bubble in a narrow vertical tube for ethylene. 

Fig 4. The axial and radial components of velocity at z/D= -
0.111 (i.e. just above the bubble). The PIV measurements 

[16] are compared to the numerical results by Bugg et al. [17] 
and VOF method. 
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Fig 5. Velocity profile in the fully developed falling film 

beside a rising single bubble. 
Fig 6. Bubble rise velocity versus time at the nose and 

bottom for water (db/D = 0.88). 
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Fig 7. Bubble rise velocity versus time at the nose and 

bottom for ethylene (db/D = 0.88). 

 
Table 1. Material properties. 

properties water air 
density ρl =998.2 kg/m3 ρa=1.1222 kg/m3 

viscosity µl =1002×10-6 kg/(m.s) µa =18.24×10-6 kg/(m.s)

surface tension γ =0.073 N/m   
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