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ABSTRACT 
In this paper, the rising of a single bubble in a viscous 

liquid and its departure from the free-surface are simulated 
using a transient 2D/axisymmetric model. To predict the shape 
of the bubble deformation, the Navier-Stokes equations in 
addition to an advection equation for liquid volume fraction are 
solved. A modified Volume-of-Fluid (VOF) technique based on 
Youngs’ algorithm is used to track the bubble deformation. To 
validate the model, the results of simulations for terminal rise 
velocity and bubble shape are compared with those of the 
experiments. Next, the effect of different parameters such as 
initial bubble radius, channel height, and liquid viscosity and 
surface tension on the shape and rise velocity of the bubble is 
investigated. Finally, the interaction of the bubble with the free 
surface during its departure from the liquid is simulated, and 
the results are compared qualitatively with experimental 
photographs.  

INTRODUCTION 
The dynamic behavior of two-phase flows is of great 

importance in various processes ranging from engineering 
applications to environmental phenomena. The presence of air 
bubbles in hydrodynamic systems often reveals many 
undesirable effects such as early erosion, loss of efficiency or 
flow irregularities.  

Many industrial applications involve two-phase flows with 
or without mass (and/or heat) transfer. Examples in Chemical 
Engineering include bubble columns, loop reactors, agitated 
stirred reactors, flotation, or fermentation reactors. For the 

design of efficient two-phase reactors detailed knowledge of, 
say, Bubble sizes and shapes, slip velocities, internal 
circulation, Swarm behaviors are of fundamental importance. 
Numerical studies of two-phase flows are carried out to analyze 
the interface behavior of one air bubble moving or rising in a 
liquid. In the past decade a number of techniques, each with 
their own particular advantages and disadvantages, have been 
developed to simulate complex multi-fluid flow problems. 
Level set methods [1-5] are designed to minimize the numerical 
diffusion hampering shock-capturing methods and typically 
define the interface as the zero level set of a distance function 
from the interface. The advection of this distance function 
evolves with the local fluid velocity. Level set methods are 
conceptually simple and relatively easy to implement. When 
the interface is significantly deformed, level set methods suffer 
from loss of mass (volume) and hence loss of accuracy. 

A well-known method for tracking the free surface of a 
liquid is Volume-of-Fluid (VOF) technique [6] where the 
computational domain is characterized by a scalar color 
function f whose value is one for a cell full of liquid and zero 
for an empty cell. A cell with a value between zero and one 
indicates a free-surface cell. In addition to the value of the 
color function the interface orientation needs to be determined, 
which follows from the gradient of the f function. Roughly two 
important classes of VOF methods can be distinguished with 
respect to the representation of the interface, namely simple 
line interface calculation (SLIC) and piecewise linear interface 
calculation (PLIC). Earlier works with VOF were generally 
based on the SLIC algorithm introduced by Noh and 
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Woodward [7] and the donor-acceptor algorithm published by 
Hirt and Nichols [8]. Modern VOF techniques include the 
PLIC method of Youngs [9]. The accuracy and capabilities of 
the older VOF algorithm such as the Hirt and Nicholas VOF 
method were studied by Rudman [10]. A drawback of these 
VOF methods for advecting gas bubbles is the so-called 
artificial (or numerical) coalescence of gas bubbles which 
occurs when their mutual distances is less than the size of the 
computational cell. 

Front tracking methods [11-13] make use of markers (for 
instance triangles), connected to a set of points, to track the 
interface whereas a fixed or Eulerian grid is used to solve the 
Navier-stokes equations. This method is extremely accurate but 
also rather complex to implement due to the fact that dynamic 
re-meshing of the Lagrangian interface mesh is required and 
mapping of the Lagrangian data onto the Eulerian mesh has to 
be carried out. Difficulties arise when multiple interfaces 
interact where all require a proper sub-grid model. Contrary to 
most other methods, the automatic merging of interfaces does 
not occur in front tracking techniques due to the fact that a 
separate mesh is used to track the interface. This property is 
advantageous in case swarm effects in dispersed flows need to 
be studied. A 3D front tracking method was used by Van Sint 
Annaland et al. [14] to simulate a single bubble rising in water. 
The front tracking algorithm predicted reasonably well the rise 
velocity and aspect ratio of a single air bubble rising in water 
for diameters in the range of 1 mm to 7 mm.  

Computational studies concerning the motion of a bubble 
near an infinite free surface are more abundant, though again 
not so plentiful as with the rigid boundary problem. Early 
studies in this area dating back to the Second World War are 
concerned with the motion of underwater explosion bubbles: for 
example, the work by Herring [15] and subsequent numerical 
study by Taylor [16]. These necessarily model the bubble as 
spherical and so the effects of buoyancy and nearby boundaries 
are to displace the bubble rather than deform its shape. One 
early consideration of the non-spherical motion of the bubble 
was performed by Lenoir [17], who employed a simple 
boundary integral technique to model the motion of the bubble. 
Blake and Gibson [18] employed an approximate integral 
equation technique to model the motion of the bubble and free 
surface. During expansion and early collapse, the calculated 
motion was shown to be in good agreement with experiments. 
However, upon formation of the liquid jet within the bubble, 
this model fails and calculations are ceased. Later work by 
Kucera and Blake [19] has shown such approximate methods to 
compare well with boundary integral studies for bubbles not too 
close to a boundary, with a reasonable agreement possible down 
to standoff distances of about two maximum bubble radii up 
until the time of jet formation. More recent calculations using 
these techniques may be found in Reference [20].  

In this study, the interface of a bubble in a liquid during its 
rise and departure from the free-surface are simulated using a 
transient 2D/axisymmetric model. A modified Volume-of-Fluid 

(VOF) technique based on Youngs’ algorithm is used to track 
the bubble deformation. To validate the model, numerical 
results are compared with those of the experiments for terminal 
rise velocity and bubble shape. The effect of different 
parameters such as initial bubble radius, channel height, and 
liquid viscosity and surface tension on the shape and rise 
velocity of the bubble is investigated. 
 
NOMENCLATURE 

de    equivalent bubble diameter 
D    bubble diameter 
f   fractional amount of liquid 
g    gravitational acceleration         
V    Velocity 
p    pressure 
R   bubble radius  
t     time 
V∞    terminal bubble rise velocity 
Δρ     density difference 
Δp    pressure difference 
 

Greek letters 
µ    Viscosity 
ρ       density 
γ      surface tension 
τ     viscous stress tensor 

Dimensionless 

M   (=
32

l

4
lg

γρ
μρΔ )  Morton number 

Eo   (=
γ

ρΔ 2
edg )  Eotvos number 

Re   (=
l

etl dU
μ

ρ )  Reynolds number 

Ca   (
γ
μV

= )  Capillary number 

Bo   (
γ

ρΔ 2
tgR

= )  Bond number  

Subscripts and superscripts 

L      liquid phase 
G     gas phase 

 

NUMERICAL METHOD 
The main issue regarding the developed model is the advection 
of the bubble interface using VOF method. In this section, we 
present a brief account of the numerical method. In modeling 
we can reasonably assume that the multi-fluid system studied in 
this paper is an isothermal system of two Newtonian, 
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incompressible and immiscible fluids. The flow governing 
equations are: 
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where V  is the velocity vector, p is the pressure, ρ is the 
density  and bF  represents body forces acting on the fluid. The 
bubble interface is advected using VOF method by means of a 
scalar field f whose value is unity in the liquid phase and zero 
in the gas. When a cell is partially filled with liquid, f will have 
a value between zero and one. 
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The discontinuity in f is propagating through the computational 
domain according to: 
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Although the velocity field is divergence free, the term )( V
rr

⋅∇  
has an order of O(ε) in numerical solution. Therefore, in order 
to increase the accuracy of the numerical solution, Eq. 4 is used 
in the conservative form as 
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For the advection of volume fraction f based on Eq. 4, 
different methods have been developed such as SLIC, Hirt-
Nichols and Youngs’ PLIC [8]. The reported literature on the 
simulation of free-surface flows reveals that Hirt-Nichols 
method has been used by many researchers. In this study, 
however, we used Youngs’ method [6, 8, 9], which is a more 
accurate technique. Assuming the initial distribution of f to be 
given, velocity and pressure are calculated in each time step by 
the following procedure. 
The f advection begins by defining an intermediate value of f, 
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Then it is completed with a “divergence correction” 
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A single set of equations is solved for both phases, therefore, 
density and viscosity of the mixture are calculated according to: 
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where subscripts L and G denote the liquid and gas, 
respectively,  μ is the viscosity. New velocity field is calculated 
according to the two-step time projection method as follows. 
First, an intermediate velocity is obtained, 
 

n
bFn

1ngn
n

1n)VV(
t

nVV~ rrtrrrr
rr

ρ
τ

ρδ
++⋅∇+⋅∇−=

−  
 
(10) 

 
The continuum surface force (CSF) method [6, 21] is used to 
model surface tension as a body force ( bF ) that acts only on 
interfacial cells. Pressure Poisson equation is then solved to 
obtain the pressure field, 
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Next, new time velocities are calculated by considering the 
pressure field implicitly, 
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RESULTS  
As a first step, the model was subjected to several tests in 

order to validate its results. The first case considered was that 
of a single bubble during its rise in a liquid; a case for which 
experimental results are available in terms of terminal bubble 
rise velocity against its diameter. The measured data performed 
by Grace [22] for air bubbles in water is given as a diagram 
shown in Fig. 1. The default material properties used in the 
simulations are given in Table 1.  

. 
properties water air 

density ρl =998.2 kg/m3 ρa=1.1222 kg/m3  
viscosity μl =1002×10-6 kg/(m.s)   μa =18.24×10-6 kg/(m.s)

surface tension γ =0.073 N/m  
Tab. 1: Material properties 

 
An axisymmetric coordinate system was used in the model 

to simulate the deformation of the bubbles rising in a vertical 
tube. The tube diameter was assumed to be around four times 
as that of the bubble diameter in order to reduce the wall 
influence on bubble movement. Bubbles with diameter ranged 
from 0.8 mm to 10 mm were simulated; larger ones tend to 
break up before they reach their terminal velocity. 
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Fig. 1: A comparison between the results of simulations with 
those of the experiments [22] for terminal rise 

velocity against initial bubble diameter. Based on 
the experiments, the rise velocity should be located 

in the region surrounded by the solid lines.

The results of the model, presented in Fig. 1, are located in 
the same region where observed by experiments. The upper 
boundary of this region corresponds to pure systems, while the 
lower curve belongs to contaminated systems. As seen from the 
figure, increasing the bubble diameter increases the rise 
velocity up to a certain limit after which the bubble starts to 
oscillate. In this regime, the rise velocity remains nearly 
constant. Adding further to the bubble diameter changes the 
deformation behavior to the spherical cap regime where the 
rise velocity again increases with diameter.  

For the bubbles smaller than the 0.5 mm there is an 
increasing deviation of simulated to measured velocities, which 
occurs mainly because of the so-called parasitic currents. 
These currents are due to inaccuracies in the calculation of 
surface tension forces, in particular because of errors in the 
interfacial normal and curvature. 

MODEL VALIDATION 

Grace [23] has analyzed a large body of experimental data 
on shapes and rise velocities of bubbles in quiescent viscous 
liquids and has shown that this data can be condensed into one 
diagram, provided that an appropriate set of dimensionless 
numbers is used. A representation of the Grace diagram [23] is 
shown in Fig. 2 where dimensionless numbers Morton (M), 
Eötvös (Eo), and Reynolds (Re) are given by  

M=
32

l

4
lg

γρ
μρΔ ,       Eo=

γ
ρΔ 2

edg ,       Re=
l

etl dU
μ

ρ   (13) 

where the equivalent diameter de is defined as the diameter of a 
spherical bubble with the same volume as that of the bubble 

under consideration. Ut represents the terminal rise velocity of 
the bubble. 
 

Fig. 2: Grace bubble diagram [23] for the shape and terminal 
rise velocity of gas bubbles in quiescent viscous liquids. Points 

A, B, and C show the cases for which the simulation results 
were compared with measurements as given in Table 2. 

 
 In Table 2, the values of the selected Morton and Eötvös 
numbers are given for simulations of bubbles in different 
regimes of bubble deformation. In this table, Reexp and Remodel 
represent the bubble Reynolds numbers obtained from the 
Grace diagram and calculated from the model, respectively. 
 
Bubble 
regime 

M Eo ReExp. Re Model Point 
(Fig. 2) 

spherical 1.42 0.01 1 1.2 A 
wobbling 14.52 1×10-9 2100 2200 B 
skirted 142.56 1 15 18 C 
Tab. 2: Morton (M) and Eötvös (Eo) numbers for simulations 

of bubbles in different regimes according to Grace bubble 
diagram [23]. 

Effect of Important Parameters 
In this section, the effect of different parameters such as 

tube size, surface tension and viscosity on the shape and rise 
velocity of the bubble is investigated. In Fig. 3, the effect of 
tube diameter on the bubble shape and terminal rise velocity is 
shown. Velocity distributions along with flow streamlines at a 
time instant are also displayed in the figure. Free-slip boundary 
conditions were applied at all confining walls. As seen from the 
figure, increasing the tube diameter increases the rise velocity 
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characterized by Reynolds number. The data used for this 
simulation is given in Table 3. The density and viscosity ratio 
in this simulation is believed to be sufficiently high to mimic 
gas–liquid systems with sufficient accuracy and much higher 
than the ratio used by Sabisch et al. [24]. 

 

Fig. 3: The effect of tube diameter on the bubble shape and rise 
velocity 

 
parameters liquid gas 

density ρl =1000 kg/m3 ρg =10 kg/m3 
viscosity μl =0.1 kg/(m.s) μa =0.001 kg/(m.s) 

surface tension γ =0.0673 N/m, - 
bubble diameter - 0.01 mِِ 

Tab. 3: Data used for the simulation to study the effect of tube 
diameter. 

 
The effect of the bubble size on terminal velocity is shown 

in Fig. 4. The rise velocity is made dimensionless 
using l/2

tgR μρΔ , where Rt is the tube radius; the bubble 
radius is also made dimensionless using the tube radius as 
Rb/Rt. This figure shows the comparison between numerical 
results and measurements [25]. The experiments were 
performed for systems with small values of Ca/Bo, where Ca 

and Bo are Capillary number (
γ
μVCa = ) and Bond number 

(
γ

ρΔ 2
tgRBo = ), respectively. As seen from the figure, the 

terminal velocity increases with bubble radius upto a maximum 
at an intermediate bubble radius of Rb/Rt=0.5. After this point, 
the terminal velocity decreases with further increase of the 
bubble radius. This is because the larger retarding effect of the 

capillary wall begins to overcome the increase in the buoyancy 
force with increasing the bubble size.   
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Fig. 4: Dimensionless rise velocity against dimensionless 
bubble radius. 

It is well known that surface tension causes an excess 
pressure inside a bubble given by the Laplace equation as 

bR2p γΔ =  for a spherical shape, where γ is the surface 
tension coefficient and Rb the bubble radius. Figure 5 shows the 
effect of surface tension on bubble rise velocity. The data used 
in this simulation are those given in Table 3 except for surface 
tension which varied from 0.03 N/m to 0.15 N/m. From the 
figure, it can be clearly seen that the bubble rise velocity 
increases with liquid surface tension. 
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Fig. 5:  The variation of bubble rise velocity versus surface 
tension for a bubble of 0.01 m in diameter. 
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Figure 6 displays the effect of viscosity on terminal rise 
velocity for a bubble with an initial diameter of 0.01 m. For a 
given bubble size, the bubble rise velocity is reduced as 
viscosity ratio is increased. This result was expected because 
increasing the viscosity ratio decreases the interfacial motion 
due to viscous forces. The relative reduction in terminal rise 
velocity from the maximum to the minimum value also 
becomes less pronounced as the viscosity ratio increases. 

Viscosity ratio ( μ l / μ g )
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Fig. 6:  The variation of bubble rise velocity versus viscosity 
ratio for a bubble of 0.01 m in diameter. 

 
Bubble Departure from the Free-Surface 

In this section, the effect of the bubble departure from the 
free surface is investigated. When gas bubbles rise through a 
pool of liquid and approach the free surface, the various violent 
motions associated with the free-surface breakup generate 
droplets that may persist in the surrounding gas to constitute a 
spray. The spray formation by this phenomenon (bubbling at 
the free surface) is shown in Fig. 7 where the free-surface 
dynamic behavior after a single bubble departure from the 
liquid is shown using both numerical model and experiments 
[26].  A schematic of the important processes during this 
phenomenon is shown in Fig. 8. A thin film of liquid is formed 
on top of the bubble before it leaves the free surface. The 
breakup and disintegration of this film create a spray of 
droplets with sizes in the order of one tenth of the bubble 
diameter. The surface waves formed during the free-surface rise 
propagate inward (toward the center) and outward away from 
the bubble. An upward jet is formed at the center of the 
disruption; the disintegration of this jet also creates small 
droplets. In general, the droplets formed from the disintegration 
of this jet are bigger in size than those formed from the breakup 
of the thin film. The material parameters used for the 
simulations in this section are given in Table 1. 

 

  

 

 
Fig. 7: Qualitative comparison between calculated images and 

experimental photographs [26] for the deformation of the free surface 
and formation of a spray during a single bubble departure. 

Fig. 8: Stages of a bubble breaking through a free surface 
 

The important effects of the bubble departure on the free 
surface deformation appear after the bubble left the liquid. As 
seen from Fig. 7, the liquid rises at the departure point; this 
phenomenon causes a low speed liquid spray rising from the 
free surface. The height of the spray is affected by different 
parameters namely the tube diameter, the initial bubble radius 
and the distance between the initial bubble location and the 
free-surface level. Figure 9 shows the effect of the tube 
diameter (made dimensionless by the bubble diameter D) on 
the height of the free surface spray. As seen from the figure, 
increasing the tube diameter increases the height of the liquid 
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rising above the free surface. This result was expected because 
increasing the tube diameter increases the bubble rise velocity 
which in turn causes a higher spike.  
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Fig. 9:  The variation of the height of the liquid spike versus 
dimensionless tube diameter. 

Figure 10 shows the effect of bubble radius on the height 
of the spray. From this figure, it can be seen that the height is a 
linearly increasing function of the bubble radius. The initial 
bubble center for the simulations shown in this figure was 
located at a distance beneath the free surface equal to four 
times as much as the bubble radius.  
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bubble radius. 

 
 

CONCLUSION 
In this paper, an axisymmetric VOF method was used to 

simulate the rise and interaction of gas bubbles in a viscous 
liquid. The model was validated by a comparison between 
numerical results with available measurements for the bubble 
deformation and velocity during its rise in a liquid. The effect 
of increasing diameter on bubble rise velocity was also 
investigated and compared well with that of the experiment. 
Next, we investigated the effect of important parameters on the 
bubble rise velocity. A bubble moving in a narrower tube 
(smaller diameter) was found to reach a smaller rise velocity. 
Surface tension and viscosity had adverse effects on the bubble 
movement. While increasing surface tension raised the bubble 
rise velocity, increasing liquid viscosity had an opposite effect. 
Finally, the effect of the bubble departure on the liquid free 
surface was investigated. The three parameters controlling the 
height of the liquid above the free surface (spray formation) 
were found to be the tube diameter; the bubble radius; and the 
distance between the initial bubble center and the free-surface 
level. Increasing the tube diameter and the bubble radius 
increased the height of the spray. 
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