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Abstract

In the linear model y = X + e with the errors distributed as normal, we obtain
generalized least square (GLS) , restricted GLS (RGLS), preliminary test (PT), Stein-
type shrinkage (S) and positive-rule shrinkage (PRS) estimators for regression vector
parameter 5 when the covariance structure in known. We compare the quadratic risks
of the underlying estimators and propose the dominance orders of the five estimators.
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1 Introduction

The most important model belonging to the class of general linear hypotheses is the
multiple regression model. The general purpose of multiple regression is to learn more
about the relationship between several independent or predictor variables and a dependent
or criterion variable.

To deal with a common multiple regression equation, consider the linear model
y=Xpf+e (1.1)

where y is an n-vector of response, X is an n x p design matrix with full rank p, 8 =
(Bi,---,Bp) is p-vector of regression coefficients and e = (e, -- ,e,)" is the n-vector of
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errors distributed as multivariate normal with location parameter zero and positive definite
(p.d.) covariance matrix ¥, denoted by e ~ N, (0, X).
Then directly

y ~ No(XB,3). (1.2)

Let us assume that in addition to the sample information y in the model (1.1), that
information also exists in the form of ¢ independent linear hypothesis about the unknown
vector parameter S where ¢ < p. These general restriction can be shown as

HB =h, (1.3)

where H is a ¢ X p known hypothesis design matrix of rank ¢ and h is a ¢ X 1 vector of
prespecified, hypothetical values.

The estimation of parameters of the multiple regression model is a common interest to
many users. Often the properties of the estimators are of prime concern. Selection of any
specific statistical property of any estimator often depends on the objective of the study.
The choice of any particular estimator may very well be determined by the aim of the end
users. It is well known that the ordinary least squares estimators are best linear unbiased.
However, if the objective of any study is to minimise some specific risk function then
other types of estimators perform better than the ordinary least squares estimator. Our
primary object of this paper is to estimate 8 when the p.d. covariance matrix 3 is known
under the subspace restriction (1.3); and then obtain shrinkage estimators of § using the
likelihood ratio test (LRT) statistic of (1.3). For complete review of underlying study
in the special case ¥ = ¢2I,, for both known and unknown ¢? and may o2 have inverse
gamma distribution, see Saleh and Han [9], Tabatabaey [13], Khan [5, 6], Srivastava and
Saleh [12] and Saleh [10].

2 Estimation

Given classical conditions (see Kuan [7]), it is well known that for known p.d. covariance
matrix ¥, the generalized least square (GLS) estimator of 3 is

g = (X'o7ix)IX'n Ty (2.1)

Obtaining GLS estimator of § under the constraint Hy : HB = h, using method of
Lagrangian multipliers, the restricted GLS estimator of 8 subject to the linear restriction
Hy: HB = h as [ is given by

B = f—(X'S'X) 'H'HX'S'X) "H'|""(HB - h). (2.2)
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See Ravishanker and Dey [8].
Let G = (X'27'X)~! and G = [HG1H']™!, then simplifying (2.2) we obtain

B = -G HGyHp~h). (2.3)

Now we consider the linear hypothesis H3 = h in (1.3) and obtain the test statistic for
the null hypothesis Hy : HZ = h.
Now let w={:8€ R, HB =h, ¥ >0} and Q = {p: € R, ¥ > 0}, then the
likelihood test statistic for underlying hypothesis is
maxﬁGw L(/Ba E)
maxgecq L(/Ba E)
exp{ 5 [(y — XB)'S"'(y — XB)]}
exp{5 [(y — XB)=~1(y — XPB)]}
1 . )
= exp{— [(HB = h)'G2(HB = h)]},

A =

which is a decreasing function with respect to (w.r.t.) x = (HB — h)'Go(HS — h).

Let u = GE/Q(HB — h); then using (1.2), x = v/u has non-central chi-square distribution
with ¢ degrees of freedom and noncentrality parameter p'p/2, where p = G;/ 2(H B —h).
Bancroft [2] defined the preliminary test estimator (PTE) of 8 as a convex combination
of B and 5 by

BT = B+[1—1I(x < x*(@))(B - B), (2.4)

where I(A) is the indicator of the set A and x?(c) is the upper 100 percentile of the
central x? distribution with ¢ degrees of freedom.

The PTE has the disadvantage that it depends on a (0 < a < 1), the level of significance
and also it yields the extreme results, namely B and E depending on the outcome of the
test. therefore we define an intermediate value as Stein-type shrinkage estimator (SE) of

B, by

B = B+1—px )(B-P), (2.5)
where
@=2)n-p)
p dn—pt2) d ¢>3. (2.6)

The SE has the disadvantage that it has strange behavior for small values of x. Also,
the shrinkage factor (1 — px~') becomes negative for y < p. Hence we define a better
estimator by positive-rule shrinkage estimator (PRSE) of 3 as

~ ~

B = B+ (1—px DI >pl(B-B)
= B%—(1—px Yx <pl(B-B). (2.7)
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Note that this estimator is a convex combination of B and E
The quadratic risk functions of the estimators are given in the following section and
the dominance properties are studied in section 4.

3 Risk Evaluations

Consider for a given non-singular matrix W, the weighted quadratic error loss function of

the form

L) = (B =B)W(B —B), (3.1)

where * is any estimator of 5. Then the weighted quadratic risk function associated with
(3.1) is defined as

R(B%8) = E[B"—B)W(B" - B) (3.2)

In this section, using the risk function (3.2), we evaluate the quadratic risks of the five
different estimators under study.
Direct computations using (1.2), (2.1) and (3.2) lead to

R(B;B) = tr(GiW). (3.3)
Let 0 = G1H'Go(Hf — h), then using (2.4) we have
R(B;B) = tr{W[Gi(I, — H'GoHG,) + 60']}

= tr(GiW) — tr{W[G1(H'GoHG1)]} + ' W. (3.4)

Note that R = G}/2H’G2HG}/2 is a symmetric idempotent matrix of rank ¢ < p. Thus,
there exist an orthogonal matrix @ (Q'Q = I,,) (see Judge and Bock [4]) such that

I, 0
RQ' = a , 3.5
QRQ [ . (3.5)
Ay Apg
QGI/QWGI/QQ' _
! ! A1 Ag
= A (3.6)
The matrices A1 and Ago are of order ¢ and p — g, respectively.
Define random variable
w = QGT'*B—QG*H'Gyh, (3.7)

then

w ~ Ng(n,IL). (3.8)
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Also

n = QG,"*B—QGY*H'Gsh.

(3.9)

Partitioning the vectors w = (w},w})" and n = (n},n5)" where w; and wy are independent

sub-vector of order g and p — g respectively, we obtain
-8 = G/°Qw-n).
Using (3.7) we can obtain
x = wywi, 0 =mnym = (HB — h)'G2(HP — h).
Now, we can write

tr{W[G H'GoHG,]} = tr{QG*WG*Q'QRQ'}

_ t’l“{ A11 Alg Iq 0 }
A21 A22 0 0
= t’f‘(AH).

Using (3.11) we have
SW6 = (HB — h) GoHG WG H Go(HS — h)
= 77’11411771-
Therefore, we obtain
R(B;B) = tr(GiW) —tr(An) +nfAnm.
Using (2.5)
R(B"";8) = E[B"" -p)YW (BT - B)
= B{(B-8)—I(x<x2)(B-BW[B - B)
—I(x < X2)(B-B)}
= E[(B—-8)(B—B)]—2E[I(x <x2)(B—B)W(B—B)
+E[I(x < Xx2)(B - B)YW (5 - B)].
Using (3.7)-(3.11) and (3.15)
R(B"T;B) = tr(GiW) — Elwi A I(x < X2)]
—2E[whAgywi I(x < x2)] + 20} An Elwi I(x < x2)]
+2n5 A1 Elun I (x < X3)],

because wy and wo are independent

ElwhAnwil(x < x2)] = myAaEwil(x < x3)),

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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using Lemmal in Appendix with ¢(x) as indicator function of x, we get
R(B™:p) = tr(GiW) = Xgpa0(@)tr(An)
+[2X3+2,9(04) - Xg+4,9(04)]77'11411771-
Using (2.6) and (2.7)
R(B%B) = EIB% )W (B - )]
= E{[(B-B)—px""(B-BYWIPB-B) —px~" (B B)
= B[~ H)'W(B~B)] —20Elx ' (B~ HW (5~ B)]
+p’ElX*(B - B)W (B — B)],
using (3.7)-(3.11) and (3.15)
R(B%;B) = tr(GiW) —2pE[x "(wiAnw — i Ajjwi + whAsw
—nyAg1wn)] + p” E[x 2 (w) Apywi)].

Using Lemmal in Appendix for ¢(x) = x~!, we have

_ 1
Elx 'niAnw] = nmAnmE |— ;
| Xg+2,0
_ 1
Elx 'wiAnw] = E 5 tr(An) + E m A
| Xq+2,0 | Xq+4,0
Using Lemmal in Appendix for ¢(x) = x 2, we have
SRR 2 2
E[X_2QUIIA11U)1] = F 5 t'f'(AH) + FE —5 77,11411’)71.
[ Xq+2,0 | Xg+4,0

Using (3.21)-(3.23) one can obtain

R(B%;:p) = tr(GIW)—p{zE —pE

2
1
2—] }t'r'(Au)
Xq+2,0

Xq+2,0
1

+p{2E —2F

Xq+2 0 Xq+4 0

2
X%M] }77'11411771-
g+,
Finally the risk of PRSE is given by
R(B°*;B8) = E[(B°F - BYW (BT - B)]
= B{[(B*—B) — (1 —px VI(x < p)(B—BIWI(B° - B)
(1 —px NI(x < p)(B-B)]}
= R(B%B) +E[(1—px ")I(x < p)(B—B)W(B-P)
—QE[(BS )'W(l —px HIx <p)(B-B)].

+pE

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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But using (2.6)
B[(B% = B)YW (1 —px HI(x < p)(B - B)]
= BB =B)+1—px B - BIWIL—px H(x <p)B - )]
= B{(B-B)WI[(1—px V(x <p)(B-B)}
+E[(1—px ")?I(x < p)(B—B)'W (B —B)]. (3.26)

Thus we can obtain

R(B°*;8) = R(B%B) — El(1—px )’ I(x < p)(B - BYW(B - B)]
—2B{(B - B)WI(1 — px ")I(x < p)(B - B)]}- (3.27)

Using (3.21)-(3.23), and Lemmal in Appendix for ¢(x) = (1 — px~ 1) I(x < p), (i = 1,2)
we get

R(B°";8) = R(B%:pP) -

Xq+2,0

2
(1 — %) I(Xg120 < P)] tr(Ai)

) -
o)
+E (1_ 2 ) I(X3+4,0 <p)| mAnm
Xq+4,0
1)
—2E ( 7 - 1) I(X§+2,0 < p)| mAnm (3.28)
Xg+2,0 |

4 Comparison

Providing risk analysis of the underlying estimators with the weight matrix W, we have
(see e.g. Searle [11])

96h1 (AH) S 77,1A11771 S GChq(AH), (4].)

where chi (A1) and chy(A11) are the minimum and maximum eigenvalue of Aq; respec-
tively. Then by (3.3) and (3.14) one may easily seen

R(B; B) — tr(An1) + 0chi (A1) < R(B; B) < R(B; B) — tr(A1) + Ochy(Ary).
By (3.11) and (3.30), under the null hypothesis Hy : H = h, we conclude

R(B;8) < R(B;P)-
Generally by (3.30), E performs better then 3 whenever
t’f'(AH)
— c¢ch (AH)

Zi:l chi(A11)
Chq(AH)

6

IN
<
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Using (3.3) and (3.18) we have

R(BT8) = R(B;B) = [2X2400(0) = X2yap(a)mi Anim
—X§+2,0(a)t7“(1411)- (4.2)
Therefore BP T performs better than B whenever
tr(Ayr) Xo12,0(ct)
chq(A11) = [2x]19,0(@) = X5y 49(0)]
For W = X'Y 71X, because tr(A11) = ¢, (3.33) satisfies.
Also under the null hypothesis Hy, since (3.32) is negative for all «, BFT performs better

than B .
Using (3.14) and (3.18), using the risks difference we can conclude that

0 (4.3)

B PT performs

better than E whenever

[1— X2, p(a)]tr(Ann)

0 .
[1— 2XZ+279 (o) + Xg+4,g/2(a)]ChQ(A11)

(4.4)

Thus, the dominance order of the three estimator B , E and BP T under the null hypothesis
Hy is given by
BB - B,
where the notation > means dominate.
Under the null hypothesis,
2¢—2)—p
alg—2)
Direct computations using the fact n > p, we get p < 2(q¢ — 2). Therefore, the risk
difference R(BS i1 B) — R(B ; B) is negative and A5 » B uniformly.
Under the null hypothesis Hy, we have

R(B%;B) = R(B;B) +tr(An)f(n,q,p),

where f(n,q,p) = PQ_QP(géi);;q(q—Q)_

The function f(n,q,p) is positive for ¢ > 3. Thus R(85;8) > R(g;ﬁ). However, as n;
moves away from 0, 7] A11m; increases and the risk of 5 becomes unbounded while the risk

R(3%;B) — R(B; B) = —ptr(A1r)

of BS remains below the risk of B; thus BS dominates E outside an interval around the
origin.
Comparing BS and BPT, under Hy, we get
. A 1 1
RESE) = RGP+ [\esole) = 20811+ 9Bl —F|tr(an)

Xg+2,0 Xq+2,0

2

_ A 2p P
= R(B™T)+ [X3+2,0(04) ] + m] tr(An)

R(BFT),

v
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for all a such that [ = x2,,(a) — 27” + q(‘f;) > 0 and R(3°;8) < R(BFT) for all a such
that { <0.

Because w; is independent of wsy, we get

R(B%";8) — R(B%8) = —E[(1—px ")’I(x < p)wyApwi]
—2E[(1 — px~ )1 (x < p)(wh Anywy — nj Ajywy)].
(4.5)

Note that for such # under which Xg 109 < p we have

B[(1 = 510 120) < )] 0.
Xg+2,0

Moreover, the expectation of a positive random variable, is positive, then one can obtain
the risk difference in (4.5) is negative. Therefore, for all S, 5+ « 5 and under Hy,
B - BS+.
However, as 11 moves away from 0, n} A117: increases and the risk of E becomes unbounded
while the risk of 45F remains below the risk of 3; thus 35+ dominates 3 outside an interval
around the origin.

Under the conditions are given above, it can be found that the dominance order of five

estimators of 8 can be categorized in the two following order.

1. B BPT = B+ - 5% - (4.6)
and
2. BBt = % = BT - (4.7)

5 Illustrative Example

For an illustrative example of domination orders of five estimators under study, we proceed
with numerical and graphical examples.
Numerical Example Now for an illustrative example of domination orders given in

previous section, we accomplish with a numerical example from Searle [11]. Suppose we

have the following five sets of observations (including z;0 =1 for i =1,---,5).
U Yi | Tio | ma1 | Ta2
1162 1 2 6
21601 1|9 |10
3157 1|6 | 4
4148 | 1 3 | 13
5123 1 ) 2

91
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Then the model can be represented as

62 1 2 6 el
60 1 9 10 B es
57 l=116 4 Bo | + | e3
48 1 3 13 Bs es

| 23 15 2 | es |

where the covariance structure of error term has the form ¥ = 02R for R = (1—p)I5+pJs,
when p = % and o2 = 2, which satisfies the condition under which ¥ 7! exists. Then
S l=1I— T

Moreover assume we want to test the null hypothesis

B2 = 0.5
Hp:q 281 —p2+3B;5 =2
pr=-1
In this approach we have
0 1 0 0.5
H=|2 -1 3|, h= 2
1 0 0 -1

Direct algebraic computations lead to

2.64583 —0.16667 —0.0875 83.7037  23.1481 —40.1852
G1= | —0.16667 0.03333  0.0000 |, G2= | 23.1481 13.4259 —24.9074
—0.08750  0.00000  0.0125 —40.1852 —24.9074  46.7593

Using (2.1) and (2.2) we can obtain

37.0 0.5
B = 05 |, 8= 2 and y = 1203.3
1.5 -1

Consider in this example n = 5, p = 3 and ¢ = 3. Therefore using (2.6) we get p = %.
Then using (2.4), (2.5) and (2.7) we have

0.5 38
BFT = | 2 [ +[1-1(1203<x3(@)]| 0 |,
-1 | 0]
0.5 [ 38 |
BSt = g = 2 | +09998 | 0 |,
~1 0
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In order to compare the risks of the above five estimators, suppose the weight matrix is

given by
0o -1 -1
W=1|1 0 1
1 1 1

Then from (3.12) we get tr(A;1) = 0.0125.

Using (3.3) and (3.14) we have R(B;8) = 0.0125 and R(B3;) = 6. Clearly 3 performs
better than B whenever 6 < 0.0125. Using Lemma2 from Appendix we can determine the
risk functions for different values o and 6. We will continue with large values of 6, to do
better comparisons, which result in large unreasonable risks’ values. The results are given
in Tablel.

Tablel: Risks’ comparison

a | 0 |RB:B | RB:B) | RBT;B) | R(B%:8) | R(B;B)
0.05 0 0.0125 0 0.0044 0.0113 0.0113
0.001 | 0.0125 0.001 0.0045 0.0110 0.0110

0.1 0.0125 0.1 0.0187 0.0221 0.0221

1 0.0125 1 0.3041 0.0694 0.0694

10 0.0125 10 37.1286 0.0995 0.0995

From the Tablel, it can be easily seen that

1. Under Hy (6 = 0), the domination order given in (4.6) satisfies.

2. For 0 < 0.001, the risks of PRSE and SE have decreasing trends and for 6 > 0.1 those
change to increasing.

3. For 0 > 0.1, GLSE performs better than both RGLSE and PTE, and PTE performs
better than RGLSE.

Graphical Example Some graphical perspectives of the risks of estimators B , E , BP T
A5 and B5T can be shown using approximations of (3.24) and (3.28). In this approach,
we use lemma 2 in Appendix to compute (3.34) and (3.35)
Then substituting suitable expression in (3.24) and (3.285), we compute underlying risks
approximately using packages MATLAB release 7.2 and MAPLE release 9.5.
For special case n = 20, p = 5 and ¢ = 3, when W = X'S !X, the graphical displays
are as follow. (Because changing values « in (3.18), does not clear graphically we use just
o = 0.3. Note that when « increases R(6"7; ) decreases).
In Figureb.1, horizontal axis is the values of # and
Rl =R(f;6), R2=R(B;P), R3=R(6"";6), R4=R(B%;p), R5=R(5°";p).
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6 Appendix

Lemmal. Assume the r.v. w is normally distributed with mean vector 7 and covariance
matrix I; and A is any p.d. symmetric matrix. Also assume ¢(.) is a Borel measurable
function, then

Elp(w'w)w] = E[¢(X§+2,T'T/2)]7,
Blp(w/w)w' Aw] = ElpO g0 )lr(A) + Blo(4 g rr jo)l7 AT
For the proof see Appendix B.2. in Judge and Bock [4].
Lemma2. Let p is an integer greater that 2m (p > 2m) then

E[(1— VI <P = Xogplp)+ 7,

Xq,0/2
where
. i plo — 2q — 4r +8)]e /4(0/4)" X2, 5,.0(p)
ri(qg+2r —2)(q + 2r — 4) '

r=0
Proof. Using the series expansion for inverse non-central chi-square distribution (see
Johnson and Kotz [3]), we have

1 2 e 02(9/2)" 1

E[(—)" = E( )"
Xg,e ; r! X3+2r,0
_ PR /2 —m)
— 27 I'(q/2+T)
Thus we can obtain
1 e 0/2(9/2)r 1
Bl 102, <o) = SO g b ympge o <o)
Xq,9 r=0 r Xq+2r,0
> 6_9/2(0/2)’" L(g/2+7r—m) 9
- ;} om | X F(q/2 + 7“) X XQ+2r,0(:0)
Therefore
P 1
E[(1 - Q—)QI(Xg,e/z <p)l = xﬁ,e/z(p) - QPE[(T)I(Xg,e < p)]
X4,0/2 Xq,0

o —0/2 r
2 e "1*(6/2) 2
= Xgo/2(0) + X Xqt2r,0(P)
7 — riT(q/2 +7)

y [PZF(Q/Z +r—2)

1 —pl'(q/2+7—1)

) + i plp —2q — 4r +8)le /2(0/2)" X2 5, 5 (p)
Xa0/2(p v (g +2r —2)(q + 2r — 4) '
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