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Abstract: We introduce a medical control model, in the sense of an optimal control problem, 

which simulates the interaction of immune system with Human Immunodeficiency Virus 

(HIV) . This model shows the strategy of chemotherapy treatment. In fact, the simulated 

optimal control pair, (u1,u2) control the percentage effect of the chemotherapy on the CD4
+
T 

cells and the virus production . An objective function is characterized based on maximizing T 

cells and minimizing the cost of chemotherapy treatment. 

In this article, a new approach is introduced to find an optimal pair control for obtaining an 

optimal HIV treatment. By using an embedding method, optimal control problem transfers 

into a modified problem in an appropriate measure space, in which the existence of optimal 

pair is guaranteed by compactness of the space, and the metamorphosed problem in measure 

space is a type of an infinite dimensional linear programming problem, whose solution can be 

approximated by that of a finite-dimensional one. 
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1. INTRODUCTION 

There are two kinds drugs for treatment of Human 

Immunodeficiency Virus (HIV) infection (Kirschner et 

al.(1997) and Renee et al. (1998)), the first kind effects on 

the virus production and reduces the virus production, the 

second kind effects on the CD4
+
T cells production and access 

CD4
+
T cells production. 

In this paper a control model is presented which consists of 

two control of the chemotherapy treatment that uses the 

above two kinds drugs. The first control, as in Mac Lan et 

al.(1992), represents the effect of the first drug chemotherapy 

on CD4
+
T cells access, and the next control presents of effect 

the  chemotherapy  has on the rival production. 

Pathologists attempt to obtain drugs that have capability both 

effects (reduce virus production and access CD4
+
T cells 

production). However some achievements obtained in this 

regard, but such drugs which have these two effects together 

do not still exist. 

In this paper, our purpose is the representation a control 

model that control both cases and minimizing the cost of 

treatment. To avoid harmful side effects, as in Kirschner et 

al. (1997), we impose a condition called a limited treatment 

window, meaning the treatment starts from t0 and lasts to 

final t1. 

 

2. TWO-CONTROL MODEL 

There are some control models study the effects of 

chemotherapy as an immune system infected with HIV, see 

for example Mc Lean et al. (1992), Perelson (1989), Perelson 

et al. (1993), and Xia (2003), Xia (2007) for latest models. 

We basically used the model and notations introduced in 

Kirschner et al .(1997),  and extend it as a two-control model. 

Let T denote the uninfected CD4
+
T cells and T* and T** 

denote respectively the latently and actively infected CD4
+
T 

cells. The free infections virus particles are V. We assume 

that the control model (governed by an ordinary differential 

equation) that describes the interaction of immune system 

with HIV virus is as follows: 

 

 

 

 

 

where the initial values of T, T*, T** and V are given at t=t0. 

In this model, the control functions for the chemotherapy are 



u1(t) and u2(t). These are measurable functional defined on 

I=[t0,t1], which are bounded and assume: 

1,     i=1,2.                                                         (2) 

 

In the medical model (1), parameters and constants, defined 

as follows:                                 

 

 death rate of CD4
+
T cell population 

= death rate of latently infected CD4
+
T cell population 

= death rate activity infected CD4
+
T cell population 

= death rate free of virus 

 rate CD4
+
T cell population becomes infected by free 

virus 

 rate T
*
 cells convert to actively infected 

 rate of growth for the CD4
+
T cell population 

N = number of free virus produced by T
**

 cells  

Tmax= maximum CD4
+
T cell population level 

s = source term for uninfected CD4
+
T cells 

 

and  

 

 

Numerical information for parameters is as in  Kirschner et 

al. (1997) and can be found in Table 1 of that article. 

The objective function that to be maximized is defined as 

J(x,u1,u2)= (3) 

 

The desired weight on the benefit and cost are shown 

respectively by the parameters  and  respectively, where 

in our case we have chosen =100 and =100 (see 

Kirschner et al. (1997) ). In (3) we are maximizing the 

benefit on T cells count, and minimizing the systemic cost 

which is based on the percentage effects of the chemotherapy 

given. The goal is to characterize the optimal pair x*(t) and 

u*(t), satisfying 

J(x*,u*)=J(x*,u1*,u2*)= MaxJ(x,u1,u2) 

    i=1,2.                                                          (4) 

 

In this maximization problem, the necessary concavity of the 

objective functional in x and u=(u1,u2) does not  hold. The 

right hand sides of the equation in (1) are bounded, due to a 

priori bounds on the T variables, which imply the needed a 

priori bounds on the state variables. These bounds needed to 

guarantee the compactness of the domain which is needed  

for the existence of the optimal control (see Rubio (1986)). 

In the next section the problem is changed to a problem in 

measure space, where we interface with a linear 

programming problem, and can use all the paraphernalia of 

the linear analysis. In fact our method based on the following 

diagram: 

 

 
 

In the following we replace the problem by another one in 

which the maximum of the objective functional (3) is 

calculated over a set of positive Radon measures to be 

defined as follows. Some authors have used this approach in 

a variety of optimal control problems; we mention only 

Heydari et al. (2006), (2001), (1999), and the pioneering 

work of Rubio (1986) as well. 

Let Ω = I  A  U, and 

x=[x1(t), x2(t), x3(t), x4(t)]=[T(t), T*(t), T**(t), V(t)]  A, 

t I, 

is the trajectory of the controlled system and A is a bounded, 

closed, path wise connected set in R
4
 , u(t) = [u1(t), u2(t)]  

U, t  I , where U is a bounded, closed subset of  R
2
. One 

may rewrite optimization problem (3) and (1) as the 

following reduced form: 

Max J(x,u)=Max J(x,u1,u2) =  

Max (5) 

s.t. 

   ,   t  I
0
                                            (6) 

(I
0
 is interior of I) 

 

We call the trajectory-control pair p=[x(.),u(.)] admissible 

pair, if: 

Original model

Mathematical model

The variational form of the model

Change the variational form to an 
infinite dimensional linear problem 
in measure space by Riesz Theorem

Modify the problem to a finite 
dimensional linear programming 
problem by Rosenblum Theorem

Using Rivised Simplex to solve the 
finite-dimensional linear 
programming problem



(i) the trajectory function x(.) is absolutely 

continuous, and x(t) A 

(ii) the pair p satisfies (6) a.e. on I
0
. 

The set of admissible pairs is denoted by W. Now, one seek 

to find an optimal trajectory-control pair p*=[x*(.),u*(.)]  W 

such that maximization J(x,u) in (5). In general the 

maximization of the functional (5) over W is not possible. 

The set W may be empty, even if W is not empty, the 

functional measuring the performance of the system may not 

achieve its maximum in this set.  It appears that the situation 

may become more promising if the set W could somehow be 

made larger. In the following we use a transformation to 

enlarge the set W. Let p=[x(.),u(.)] be an admissible pair and 

B an open ball containing I  A. We denote by C'(B) the 

space of real-valued continuously differentiable functions on 

B. Let φ  C' (B) and define 

φ
g 
= φxg+φt = Δφg + φt.                                                        (7)  

The function φ
g
 is in the space C(Ω), the set of all continuous 

function on the compact set Ω . For each admissible pair, we 

have (see Rubio (1986)), 

 = Δφ, φ  C' (B).                                       (8)  

Let D(I
0
) be the space of infinitely differentiable real valued 

functions with compact support in I
0
. For each ψ  D(I

0
) 

define: 

(t, x(t), u(t))= xj (t)+gj (t), j=1, 2,3,4.                           (9) 

So we have (see[8]) 

dt = 0                                                 (10)  

Now, assuming that B1 is an open ball in R containing I, 

denote the space of all differentiable functions on B1 by C' 

(B1), then 

θ
g
(t,x,u) = (t), (t,x,u)  Ω                     

 and  

dt = αθ, θ  C' (B1)                                      (11)  

The set of equalities (8) of which we singled out the special 

cases (10) and (11) are properties of admissible pairs in the 

classical formulation of optimal control problem. In the 

following section, by suitable generalizing them, we shall 

effect the transformation of this into another, non classical 

problem which appear to have better properties in some 

aspects (see Rubio (1986) for more details). 

 

 

3. OPTIMIZATION IN MEASURE SPACE 

For each admissible p, we corresponds the linear continuous 

functional, as follows: 

Λp:F(.,.,.) C(Ω)→                           (12)  

This well defined mapping is linear, positive, continuous and 

injective (see Rosenbloom (1952)), therefore, we can identify 

pairs p with the linear functional Λp . Using this approach, the 

above control problem with the objective functional (5) can 

be written as follows: 

Maximize    Λp (f0)                                                             (13) 

Subject to: 

Λp (φ
g
) = Δφ, φ  C' (B) 

Λp (ψ
j
) = 0, j=1,2,3,4; ψ  D(I

0
)                                         (14) 

Λp (θ
g
) = αθ , θ  C' (B1), 

where f0 = x1(t)- .             

Let M
+
(Ω) denote the space of all positive Radon measures 

on Ω . By the Riesz representation theorem (see Royden 

(1970)), there is a one-to-one correspondence between 

functional Λp   C*(Ω) and a positive Borel measure on Ω 

such that; 

Λp  (F) =  = µ(F), F  C(Ω), 

 where C*(Ω) is the dual space on Ω.    Using these concepts, 

we change the space of optimization problem to the measure 

space. In other words, the optimization problem in functional 

space (13)-(14) is equivalent to the following optimization 

problem in measure space: 

Maximize  µ(f0)                                                                  (15) 

Subject to: 

µ(φ
g
) = Δφ, φ  C' (B) 

µ(ψ
j
) = o, j=1, 2, 3, 3; ψ   D(I

0
)                                        (16) 

µ(θ
g
) = αθ, θ  C' (B1). 

 

Define the set of all positive Radon measures satisfying (16) 

as Q, and topologize the space M
+
(Ω) by the weak*-topology. 

One can prove the existence of an optimal measure in the set 

Q for the functional µ →µ(f0) under the conditions imposed 

(see Heydari et al .(2001)). 

 

4. APPROXIMATION OF OPTIMAL CONTROL BY 

OPTIMAL MEASURE 

The maximization problem (15)-(16) is an infinite-

dimensional linear programming problem and we are mainly 



interested in approximating it. It is possible to approximate 

the solution of the problem (15)-(16) by the solution of a 

finite dimensional linear program of sufficiently large 

dimension. Consider the first set of equalities in (16). Let the 

set 

{φi, i=1,2,...} 

be total in C' (B), i.e; be such that the linear combinations of 

the functions φi   C' (B) are uniformly dense in C' (B), we 

can prove: 

Proposition 1: Consider the linear programming consisting of 

the maximizing functional µ →µ(f0)  over the set  

of measures in M
+
(Ω) satisfying   

µ(  , b=1,2,...,M1,  

µ(         r=1,2,...,M2, 

µ( s            =1,2,...,M3 

then if M1, M2, M3 tend to infinity, 

 ≡ f0) tends to  supQµ(f0). 

Proof: see Appendix of Heydari et al .(2006). 

It is possible to characterize a measure in the set  at 

which the linear function µ(f0) attains in maximum, it follows 

from a result of Rosenbloom  (1952) that: 

(17) 

where = y1, y2, ..., yn}  ,  

and Y is an approximately dense subset of Ω. In (17)  is an 

unitary atomic measure that is characterized by: 

 (y)(F) = F(y), y . 

By (17) and Proposition 1, the infinite-dimensional linear 

programming (15)-(16) can be approximated by the following 

linear programming problem, where yk belongs to an 

approximately dense subset of Y. 

Maximize                                                   (18)  

Subject to: 

 

  

                                                          b=1,2,...,M1 

yk)=0,                                                               (19) 

                                        j=1, 2, 3, 4 

                             

                                                          r = 1, 2, ..., M2 

 

 

 s(yk) = as,   s = 1, 2, .., L, 

                                                          0, 

The set Ω will be covered with a grid, where the grid will be 

defined by taking all points in Ω as:  

Yk = [t, , k=1, 2, ..., N. 

The points in the grid will be numbered sequentially from 1 

to N. We used a home-made Revised Simplex to solve the 

linear programming problem (18)-(19). The analysis of 

constructing control and trajectories follows from Rubio 

(1986). 

 

 

5. NUMERICAL RESULT 

Example 1: In medical control problem (1), we assumed the 

parameters as: 

 

 

k1=2.4  

 

k2=3  

 

Tmax=1.5  

 

r=0.03 

 

N=1200 

 

s=10 

 

 

 

 

 

 

 

 

 

and 

Interval Partitions 

AT =[T0, T0 + 500] 

AT* =[0,500] 

AT** =[0,500] 

AV =[0,500] 

=[0,1] 

=[0,1] 

I =[0,500] 

PT =5 

PT* =5 

PT** =5 

PV =5 

 =5 

 =5 

Pt =5 

 

Also let M1=4, M2=4 and L=10, then by solving linear 

programming (18)-(19) we have the optimal T cell count as 

T=980. The control functions u1(t) and u2(t) can be obtained. 

In fact they show the best policy of drugs treatment. In the 

following, Figure 1 shows the uninfected T cells populations 

in absence of treatment. Figure 2 and 3, show the optimal 

control u1 and u2, respectively, and Figure 4 shows the 

uninfected T cells population during treatment time. It should 

be mentioned that the procedure is considered after 800 days 

of infection. 

 

Figure 1. Uninfected T cells population in absence of 

treatment 



 

Figure 2. Optimal control u1 

 

Figure 3. Optimal control u2 

 

Figure 4.  Uninfected T cells population during treatment 

time 

6. CONCLUSION 

The method that we developed here for best chemotherapy in 

treatment of HIV is based on linear technique. This procedure 

might become a useful technique for the computation of a 

best treatment related to epidemiological disease with fully 

nonlinear model, of course, it is not necessary to impose any 

convexity on objective function. 
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