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Abstract 
In this paper, a simple method for crack detection in 
plate structures based on wavelet analysis is presented. 
The fundamental vibration mode of a cracked plate 
obtained by Finite Element Method is analyzed using 
two-dimensional discrete wavelet transform to estimate 
accurately both the location and length of the cracks. 
The feasibility of the proposed method is demonstrated 
through simulation examples, which involves plates 
with one or more cracks of various depths at different 
positions and orientations, especially near the plate 
edges. It is demonstrated that by using this technique 
one can detect sub-surface cracks, which is a notable 
result. The proposed detection technique may serve the 
purpose of structural health monitoring in situations 
where spatially distributed measurements of structural 
response in regions of critical concern can be made 
with, for example, networks of distributed sensors, 
optical fibers, computer vision and area scanning 
techniques.  
Keywords: Crack detection, Finite Element Method 
(FEM), Sub-surface defects, Wavelet analysis. 
 
Introduction 
Cracks present a serious threat to the performance of 
structures because most of structural failures are due to 
material fatigue. For this reason, methods allowing 
early detection and localization of cracks have been the 
subject of intensive investigation over the last two 
decades. A review of the vibration-based damage 
identification methods for detection of cracked 
structures is done by (Doubling, 1998) [1]. The 
vibration of a cracked plate was first investigated by 
Lynn and Kumbasar (1967) [2]. Liew et al. (1994) 
studied the vibrational behavior of a plate having an 
edge or central crack [3]. Cawley and Adams (1979) 
seem to have been the first to locate defects within a 
rectangular plate by utilizing natural frequency changes 
[4]. Araujo dos Santos et al. (1999) [5] and Chen and 
Bicanic (2000) [6] proposed a method where both 
natural frequencies and mode shapes were used to 
detect damage in a laminated rectangular and a 
cantilever plate, respectively. Cornwell et al. (1999) 
developed a damage detection method based on 
changes in modal strain energy [7]. In this paper, the 
wavelet coefficients of a two-dimensional discrete 
wavelet transform will be used to identify the location 
of the crack in a simply supported plate. The wavelet 
transform is applied to the first mode shape of the  

 
 
 
cracked plate, which is obtained by ANSYS software. 
Location of perturbations in wavelet coefficients identify 
the site of cracks, the maximum value of wavelet 
transform coefficients and width of perturbation are good 
criteria to evaluate crack depth and length, respectively.  
 
Discrete wavelet transform (DWT) 
In the case of a 1D space, the continuous wavelet 
transform of a function f (x) is defined as a convolution 
of the function with a function ψ(x) called the wavelet 
function (mother wavelet) in the form 
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where s and u are the scale and translation variables, 
respectively, and ∗ denotes the conjugate part. For 
constructing a proper wavelet, which reflects the 
properties on real applications, Mallat (1989) [8] 
developed the multiresolution analysis. A scaling 
function ( ),x yφ  is defined and the wavelet function 

( )xψ  is constructed using the scaling function. 

The scaling function ( ),x yφ  is associated with a one-
dimensional multiresolution approximation 
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Where ⊕ denotes the direct sum of two vector spaces. 
The signal is now a finite energy function 
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multiresolution approximation of ( )2 2L R  . Let 

( ) ( ), ( )x y x yφ ϕΦ =  be the associated two-



dimensional scaling function. Let ( )xΨ  be the one-
dimensional wavelet associated with the scaling 
function ( )xφ . Then, the three “wavelets” 
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is an orthonormal basis of jW2 , and 
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is as orthonormal basis of ( )2 2L R .The difference of 

information between 2 1
d

jA f+ and 2
d

jA f is equal to the 

orthonormal projection of ( )f x on 2
jW , and is 

characterized by the inner products of ( )f x  with each 

vector of an orthonormal basis of 2
jW  . It is concluded 

that this difference of information is given by the three 
detail 2D signals 
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Just as for one-dimensional signals, one can show that 
in two dimensions the inner products which 
define 2

d
jA f , 1

2 jD f , 2
2 jD f and 3

2 jD f , are equal to a 
uniform sampling of two-dimensional convolution 
products. Since the three 
wavelets ( )1 ,x yΨ , ( )2 ,x yΨ  and ( )3 ,x yΨ are 

given by separable products of the functions φ  and 
ψ , these convolutions can be written 
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The expressions (7) show that in two dimensions 

2
d

jA f and the 2
k

jD f  are computed with separable 
filtering of the signal along the abscissa and ordinate . 
At the rest of this article we use CH, CV and CD 
as 1

2 jD f  , 2
2 jD f and 3

2 jD f , respectively, for the sake 
of simplicity. 
 
Detection of crack location and length 
To detect the location and length of the crack, two-
dimensional discrete wavelet transform is applied to the 
plate modal data. This modal data is obtained by finite 
element analysis using ANSYS. The crack has been 
modeled by plate elements that have infinitesimal 
elasticity module in crack site. The data is obtained from 
finite element analysis is available in A mode shape is a 
particularly regular function and, therefore, a high 
number of vanishing moments is required for the wavelet 
function. The wavelet function, in addition, should 
preserve symmetry, as vision is sensitive to artifacts 
caused by asymmetrical wavelets. 51 × 51 sample grid, 
which is dense enough for identification purposes. For 
the wavelet analysis, level one of decomposition is used. 
The horizontal detail coefficients matrix, CH, is sensitive 
to defects with orientation parallel to the x-axis and for 
this reason; the detail coefficient magnitude reflects the 
crack physical dimensions. The vertical detail 
coefficients matrix, CV, is sensitive to defects with 
orientation parallel to the y-axis. The diagonal detail 
coefficients matrix, CD, is not sensitive to defects 
parallel to x or y-axis. Hence, the diagonal detail 
coefficients matrix is only useful for detecting diagonal 
cracks with respect to the coordinate system. A 
modeshape is a particularly regular function and, 
therefore, a high number of vanishing moments is 
required for the wavelet function. The wavelet function, 
in addition, should preserve symmetry, as vision is 
sensitive to artifacts caused by asymmetrical wavelets. 
The Symlet N = 6 two-dimensional wavelet is used in the 
analysis presented, yet other wavelets satisfying the 
aforementioned criterion could be equally well used. 
  

 
Figure 1: 1st mode shape of a cracked plate with 

crack position in (x,y)=(42.5 cm,41 cm) in an array of 
51×51 sample grid 

 
For FEM analysis, a cracked plate, simply supported in 
four sides with the following dimensions and mechanical 
properties is considered: length = 1.0 m, width = 1.0 m, 
depth = 0.08m, E = 200 GPa, v = 0.3 and ρ = 7860 
kg/m3. Using the above-described procedure, the 



fundamental vibration mode of the cracked plate was 
calculated by ANSYS. The results are shown in 
“Figure 1”. 
  

 
(a) 

 
(b) 

Figure 2: (a) Contour map of horizontal detial 
coefficients matrix, CH, for a cracked plate centred 

at (x,y)=(42.5 cm, 41 cm) in an array of 31×31 
sample grid; (b) zoomed area of crack position. 

 
“Figure 2 and 3” illustrate horizontal detail coefficients 
matrix, CH, of the first mode of vibration for plates 
with a crack centered at (x,y)=(42.5 cm, 41 cm) and 
(x,y)=(52.5 cm, 31 cm), respectively, having a crack 
depth of 2 cm.  

 
The maximum value of CH is located in the crack 
center. There are perturbations of CH near horizontal 
edges of plate illustrated in “Figure 2” because of 
discontinuity at the plate supports. It should be noted 
that these perturbations are also depicted in other 
similar figures.   The CH data are available on an array 
of 31 × 31 sample grid after using two-dimensional 
discrete wavelet transform because of down sampling. 
 
“Figure 4 and 5” illustrates horizontal detail 
coefficients matrix, CH, for the first mode of vibration 
for plates with a crack centered at (x,y)=(54  cm, 31 
cm) with length of 8 cm and (x,y)=(55 cm, 31 cm) with 
length of 10 cm, respectively, having a crack depth of 2 
cm. The horizontal extent of CH perturbations in the 
crack position is a measure of the crack length. For 
example in “Figure 5” the horizontal extent of CH 

perturbations in the crack position is approximately 9.6 
cm compared to 10 cm length of the crack. 
 

 
(a) 

 
(b) 

Figure 3: (a) Contour map of horizontal detial 
coefficients matrix, CH, for a cracked plate centred at 

(x,y)=(42.5 cm, 41 cm) in an array of 31×31 sample 
grid; (b) zoomed area of crack position. 

 

 
Figure 4: Contour map of horizontal detial 

coefficients matrix, CH,  for a cracked plate centred 
at (x,y)=(54 cm, 31 cm), with length of  8 cm in a 

31×31 sample grid. 
 



 
Figure 5: Contour map of horizontal detial 

coefficients matrix, CH,  for a cracked plate centred 
at (x,y)=(55 cm, 31 cm), with length of 10 cm in an 

array of 31×31 sample grid. 
 
 
 
 
 
 
 
 
 

The maximum value of CH at the center of crack can be 
used as a good criterion for estimating of crack depth. 
“Figure 6” shows horizontal detail coefficients matrix, 
CH, of a cracked plate with a crack centered at (x,y)=(54 
cm, 31 cm) with different depths and length of 6 cm. It is 
possible to obtain some curves of maximum CH at the 
center of crack versus depth per length of the crack, by 
analyzing different crack depths with different lengths. 
“Figure 7” shows these curves. 
 
Determination of embedded cracks 
In previous cases, all detected cracks were surface cracks 
but it is important to know if wavelet analysis method is 
able to detect sub-surface cracks. “Figure 8” shows the 
location of a sub-surface crack centered at (x,y)=(53 cm, 
31 cm) which is located at depth of  2.5 cm under surface 
of the plate. 

 
 
 
 
 
 
 
 
 
 
 
Figure 6: Contour map of horizontal detial coefficients matrix, CH,  for a cracked plate with crack  depth of (a) 1 

cm (b) 2 cm (c) 3 cm in an array of 31×31 sample grid. 
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Figure 7: Curves of crack depth. 

 
Analyses for sub-surface cracks in different depths 
show that until the ratio of crack depth to plate 
thickness is less than 50 percent, identification of crack 
is possible (“Figure 9”). 

 
Figure 8: Contour map of horizontal detial 

coefficients matrix, CH, of a plate with a sub-
surface crack in an array of 31×31 sample grid. 



 

 
Figure9: maximum CH versus ratio of  sub-surface 

crack depth to plate thickness. 
 
Determination of non-horizontal crack 
In section 3, it is mentioned that diagonal detail 
coefficients matrix, CD, is not sensitive to defects 
parallel to x or y-axis and hence the diagonal detail 
coefficients are of low value for a horizontal cracks but 
useful for detecting diagonal ones. “Figure 10” 
illustrates that a crack that makes an angle of 45˚ with 
x-axis can be detected using diagonal detail 
coefficients matrix, CD, but it is not true in the case of 
using horizontal detail coefficients matrix, CH.  
 

 
Figure10: Contour map of diagonal detial 

coefficients matrix, CD, of a plate with diagonal 
crack in an array of 31×31 sample grid. 

 
Detection of two cracks in a plate 
It is obvious that in practical situations there is more 
than one crack in damaged region. Then it is important 
to investigate the capability of this method to detect 
more than one crack. “Figure 11” shows CH 
coefficients matrix of plates that are contain two 
horizontal cracks with different distances from each 
other. As illustrated in “Figure 11” this method can 
detect cracks that are too close to each other. The 
estimation of crack depth in presence of more than one 
crack has a certain degree of ambiguity that increase 
when two cracks are closer to each other.  

 
Figure 11: Contour map of horizontal detial 

coefficients matrix, CH, of plates with two cracks 
centered at (a) (x1,y1)= (53, 31) & (x2,y2)= (61, 31) 
(b) (x1,y1)= (53, 31) & (x2,y2)= (63, 31) (c) (x1,y1)= 

(53, 31) & (x2,y2)= (65, 31) in an array of 31×31 
sample grid. 

 
Determination of cracks near edges of plate 
There is an ambiguity in detection of cracks near 
supports of plates. “Figure 12” illustrates the horizontal 
wavelet coefficients matrix, CH, of a plate that 
contains crack near edge. According to “Figure 12” a 
good estimation of crack position, length and depth 
cannot be obtained.  
 

 
Figure 12: Contour map of horizontal detial 

coefficients matrix, CH, for a cracked plate centred 
at (x,y)=(2.5 cm, 31 cm), with length of  5 cm in an 

array of 31×31 sample grid. 
 
Conclusions and Future works 
Viability of wavelet transform method for 
identification of crack in plate structures was 
demonstrated by analyzing the vibration mode of 
cracked plate modeled by ANSYS (FEM software). 
The location and extent of crack is accurately depicted 
in the spatial change of transformed response. Analysis 
of more realistic situations such as multiple cracks, 
cracks near edges, oblique cracks and sub-surface 
defects demonstrated the feasibility of the proposed 



method. Capability of this technique in detection of sub 
surface defects is an interesting result. It is shown that 
cracks embedded in the depth of less than 50% of 
thickness of plate can be detected. 

 
More generally instead of using vibrational analysis 
(dynamic loading), it is possible to use static analysis 
(static loading) in order to find displacement field in 
damaged region that is easier to obtain in some cases. 

 
These results may be use as a basis for detection of 
cracks in engineering structures. Extension of using 
this technique for damage detection in different 
structures such as pipelines, thick walled pressure 
vessels and so on are possible but more investigation 
have to be done in this subject. 

 
The work presented provides a foundation for using the 
two-dimensional wavelet analysis as an efficient 
damage detection tool for two-dimensional structures. 
These results make wavelet analysis favorable for use 
in experimental data analysis. It seems, however, that a 
key issue for an efficient application of the method is 
the spatial resolution and the accuracy of the response 
data.  
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