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1. Introduction and motivation

Let G = F/R be a free presentation of a group G. Then the Baer invariant of G with respect to the
variety N; of nilpotent groups of class at most ¢ > 1, denoted by N:M(G), is defined to be

RN ye41(F)

NeM(G) = IR, F]

N:M(G) is also called the c-nilpotent multiplier of G. Clearly if ¢ =1, then A, = A is the variety of
all abelian groups and the Baer invariant of G with respect to this variety is

RNF
[R, F1’

M(G) =
which is the well-known Schur multiplier of G.
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It is important to find structures for the Schur multiplier and its generalization, the c-nilpotent
multiplier, of some famous products of groups. Determining these Baer invariants of a given group is
known to be very useful for the classification of groups into isoclinism classes (see [1]).

In 1907, Schur [17], using a representation method, found a structure for the Schur multiplier of
a direct product of two groups. Also, Wiegold [19] obtained the same result by some properties of
covering groups. In 1979 Moghaddam [13] found a formula for the c-nilpotent multiplier of a direct
product of two groups, where ¢ + 1 is a prime number or 4. Also, in 1998 Ellis [2] extended the
formula for all ¢ > 1. In 1997 the second author and Moghaddam [10] presented an explicit formula
for the c-nilpotent multiplier of a finite abelian group for any c¢ > 1. It is known that the direct
product is a special case of the nilpotent product and we know that regular and verbal products are
generalizations of the nilpotent product.

In 1972, Haebich [6] found a formula for the Schur multiplier of a regular product of a family of
groups. Then the second author [9] extended the result to find a homomorphic image with a structure
similar to Haebich’s type for the c-nilpotent multiplier of a nilpotent product of a family of groups.

In section two, we extend the above result and find a homomorphic image for the c-nilpotent
multiplier of a verbal product of a family of groups with respect to a variety ¥V when V € N or
NeeV.

A special case of the verbal product of groups whose nilpotent multiplier has been studied more
than others is the nilpotent product of cyclic groups. In 1992, Gupta and Moghaddam [5] calculated

the c-nilpotent multiplier of the nilpotent dihedral group of class n, i.e. G, =Z, iZz. (Note that in
2001 Ellis [3] remarked that there is a slip in the statement and gave the correct one.) In 2003,
Moghaddam, the second author and Kayvanfar [14] extended the previous result and calculated the
c-nilpotent multiplier of the nth nilpotent product of cyclic groups for n =2, 3,4 under some con-
ditions. Also, the second author and Parvizi [11,12] presented structures for some Baer invariants of
a free nilpotent group that is the nilpotent product of infinite cyclic groups. Finally the authors and
Mohammadzadeh [8] obtained an explicit formula for the c-nilpotent multiplier of the nth nilpo-
tent product of some cyclic groups G =Z Yoookzk Z, Yoo in[, where i1 divides r; for all i,
1<i<t—1, for c >n such that (p,r;) =1 for any prime p less than or equal to n.

In section three, we give an explicit formula for the c-nilpotent multiplier of the above group G
when (p,r1) =1 for any prime p less than or equal to n + c, for all positive integers c, n.

2. Verbal products

A group G is said to be a regular product of its subgroups A;, i € I, where [ is an ordered set, if the
following two conditions hold:

(i) G=(Ailiel);
(ii) AiNA;=1foralliel, where A;=(Aj | jel, j#i)C.

Definition 2.1. Consider the map
* X
v:[Ja—T]]A.
iel iel
aiay...ap — (ay,az,...,dy),

which is a natural map from the free product of {A;}ic; on to the direct product of {A;j}ic;. Clearly its
kernel is the normal closure of

(1Ai, Aj]

i,jel, i#j)

in the free product A =[]}, A;. It is denoted by [Al’.“] and called the Cartesian subgroup of the free
product (see [16] for the properties of Cartesian subgroups).
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The following theorem gives a characterization of a regular product.

Theorem 2.2. (See Golovin [4].) Suppose that a group G is generated by a family {A; | i € I} of its subgroups,
where [ is an ordered set. Then G is a regular product of the A; if and only if every element of G can be written
uniquely as a product

aidaz...danu,
where 1#a; € Ay, 1 <+ < hn andue[Af]:([AiG,AjG.]|i,jel, ij).

Definition 2.3. Let V be a variety of groups defined by a set of laws V. Then the verbal product of a
family of groups {A;}ic; associated with the variety V is defined to be

H?EIAI'
Aj=—-tel"t
VH V(A) N[AN]

iel

The verbal product is also known as varietal product or simply V-product. If V is the variety
of all groups, then the corresponding verbal product is the free product; if ¥V = A is the variety of
all abelian groups, then the verbal product is the direct product and if V = N is the variety of all
nilpotent groups of class at most c, then the verbal product will be the nilpotent product.

Let {A; |i eI} be a family of groups and

1%R,’%F1~3Aiﬁl
be a free presentation for A;. We denote by 6 the natural homomorphism from the free product
F =TI}, Fi onto A =[]j,; A; induced by the ¢;. Also we assume that the group G is the verbal

product of {A;}ic; associated with the variety V. If ¢ is the natural homomorphism from A onto G
induced by the identity map on each Aj;, then we have the sequence

* *
F=[]F%Aa=]a%c=v]]a—1
iel iel iel
The following notation will be used throughout this section.

Notation 2.4.

(i) Dy =ni¢j[Ri’ Fj]F;

)
)
(i) De =T1T5j s, pojotilRis Fugs oo Fud"s
) Ky =V(F)N[Fy;

)

Let H, be the kernel of v, and R be the kernel of ¥, o 0. It is clear that R is actually the inverse
image of H, in F under 6, where H, = V(A) N [A,A] by the definition of the verbal product. Put
He=yc+1(A)N [Alf“], then an immediate consequence is the following lemma.

Lemma 2.5. With the above notation we have

(i) 6(Ky) =H, and 6(K.) = H;
(i) G=F/R and R =[[;¢; RF Ky = ([Tic; R)D1K,.
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Proof. (i) This follows from the definition of 6.

(ii) It is easy to see that kerf = ]_[ie,RiF. On the other hand, since 6(K,) = kerv,,, we have
R = (ker®)Ky = [[;c; RFKy. Also for all r € R; and f € F, r/ =rr, f]. This implies that [];, Rf =
Hiel Ri[R;, F]. Since [R;, Fi] C R;, Hiel RiF = 1_[1»61 R;Dy. O

We now prove some lemmas to compute the c-nilpotent multiplier of G.
Lemma 2.6. Keeping the above notation we have
(i) [R, (F1= (Hie][Ri’ CFi])DC[I<Vv Fl.
(ii) If V(F) S Ye41(F), then RN yeia (F) = [ i) (Ri N Yeq1 (Fi)) EcKy.

(iii) If yey1(F) S V(F), then RO yYeq1 (F) =[Tie; (Ri N Yey1(F))EcKe.

Proof. (i)

[R, F1= []‘[ Rf Ky, CF}

iel
=[]iRi. FIFIKy. cF]
iel
= (]‘[[Ri, Jﬂ) Dc[Ky, cF.
iel

(ii) Let g € RN y41(F). Then g =r;, ...1y,dk by Lemma 2.5, where r;;, € Ry, d € D1 and k € K.
Now consider the natural homomorphism

* X
p:F=[[Fi—]]F:
iel iel
Since g € yey1(F), 9(8) = (g ... To) € Yer1([Tig; Fi) =T ig; Yer1(Fi). Therefore 1y, € yei1(Fi) MRy,
and then dk € .41 (F) N [FiF]. Now since k € V(F) C yc+1(F), we have d € y.4+1(F) N D1 = E. and so

the result follows.
(iii) Since K¢ € Ky, [ic;(Ri N Yeq1(F)EcKe € R N yeq1(F). For the reverse inclusion, similar to

part (i), dk € ycH(F)ﬁ[FiF]. Therefore RNyc41(F) € [1ic;(RiNYet1(Fi))Ke. Now the inclusion E; € K¢
shows that the equality (iii) holds. O

Lemma 2.7. With the above notation, let ¢ : F — F/E. be the natural homomorphism. Then @c([;c;(Ri N
Ve+1(Fi))Ky) is the direct product of its subgroups ¢.(Ky) and @c(R; N yey1(F)), i € L.

Proof. The Three Subgroups Lemma shows that
[RiNYey1(Fi). Ky] CEc foralliel,
and
[Ri N Yer1(Fi), RiN Y1 (FH] S Ec foralli,jel, i#j.
So we have

[@c(Ri N yey1(F)). gc(Ky)] =1 foralliel,
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and

[@c(Ri N Yer1 (F)), @c(Rj N yeq1(F)] =1 foralli,jel, i+#j.
Moreover, by Theorem 2.2 we conclude that
@c(Ri N ye+1 (F) N (H‘PC(R in mﬂﬁ))w(h)) =1
i#j
Now the result follows by the definition of the direct product. O
Lemma 2.8. With the previous notation,

(1) If V(F) € Yeq1 (F), then oc(Kyv)/@c([Kv, F1) = Hy/[Hy, Al
(ii) If Yer1(F) S V(F), then oc(Ko) /@c([Ke, F1) = He/[Hy, Al

Proof. (i) If V(F) € yc4+1(F), then

©c(Ky) ~ KyEc ~ Ky
@oc(Ky, cF]) — [Kv, FIEc Ky N[Ky, (FIE:

On the other hand

0(Ky) _  Kykerd Ky N Ky
0Ky, cF1) _ [Ky, cFlker6 — Ky N[Ky, Flkerf Ky N[Ky, F1D1 [[;o R

Now Theorem 2.2 and definition of E. imply that

0(Ky) Ky
0Ky, cF1) ~ Ky N[Ky, (FIE¢

Therefore by Lemma 2.5, we conclude that

pc(Ky) o 0Ky) . Hy

@c([Ky, cF1) — 0([Ky, cF) ~ [Hy, Al’

(ii) The proof is similar to (i). O
Now we are ready to state and prove the main result of this section.
Theorem 2.9. With the above notation,
(1) If Nc €V, then [];c, NeM(A)) x Hy/[Hy, (Al is a homomorphic image of NeM(V []i¢; A, and if
V[lic; Ai is finite, then the above structure is isomorphic to a subgroup of NeM(V [ ;¢ Ai).
(ii) If V € NG, then []ig; NcM(Ay) x Hc/[Hy, (Al is a homomorphic image of NeM(V [, Ai), and if
Vlic; Ai is finite, then the above structure is isomorphic to a subgroup of NeM(V [ Ai).

Proof. (i) By Lemma 2.6(i), (ii)

[R. cF1  T[lief[Ri. cFilDc[Ky, cF1°

N’(‘M(VHA;‘) ~ RN Ye+1 (F) ~ l_[iel(Ri n Vc+1(Fi))Ech

iel



3274 A. Hokmabadi, B. Mashayekhy / Journal of Algebra 320 (2008) 3269-3277

Therefore there is a natural epimorphism from N:M(V[];; Ai) to

Hiel(Ri N Vc+1(Fi))Ech ~ Wc(nieI(Ri N Vet1 (Fi)Kyv)
HiEI[Ri, cFilEc[Ky, ¢F] B @c(HiEI[Riy cFillKy, ¢F]) '

Lemma 2.7 and the fact that @:([Ky, F]) € ¢c(Kyv) and @c([Ri, ¢Fil) € @c(Ri N ye+1(F;)) imply that

¢c(l_[iel(Ri N Yer1(Fi))Ky) ~ 1—[ @c(Ri N Yer1(Fp)) ©c(Ky)

<,0c(1—[,~61[Ri, cFillKy, ¢F]) icl @c([Ri, cFiD) @c([Ky, FD’

It is straightforward to see that

PcRiNyer1(F)) o Ri N yeqa (Fi)
@c([Ri, cFi) — [Ri, cFil

by Theorem 2.2. Therefore, the result holds by Lemma 2.8(i).
(ii) By an argument similar to (i), we obtain the result. O

We need the following lemma whose proof is straightforward.
Lemma 2.10. Let {A; | i € I} be a family of groups. Put A = ]‘[fel A;. Then for all integers m > 2,
Yin(A) = [ [ v (AD (vin (A) N [AL]).
iel
In particular if the A; are cyclic, then ym(A) = ym(A) N [A,A].
The following corollary is an interesting consequence of Theorem 2.9 for cyclic groups.

Corollary 2.11. Let {A; | i € I} be a family of cyclic groups. Then

2c
(i) fFNe SV, then NeM(V TTic; Ai) = Hy/[Hy, (Al Moreover if V € Nag, then V ([, A;) is a homomor-
phic image of NeM(V [1;¢; Ab).

m-+c
(i) If V € N, then NeM(V [ 1i; A)) = He/[Hy, (Al Moreover if Ny €V, then i1 ([1;4; Ai) is a homo-
morphic image of NeM(V [ [;¢; AD-

Proof. (i) Since the A; are cyclic groups and the R; have no commutators, it is concluded that
D. = E.. So the epimorphism in the proof of Theorem 2.9, is actually an isomorphism. Also
NcM(A;j) =1, therefore NeM(V [i; Ai) = Hy/[Hy, cAl. Now suppose N: €V C Noc. The inclusion
V(A) € ¥c+1(A) and Lemma 2.10 imply that V(A) € [A{‘] and thus H, = V(A) N [AI.A] = V(A). So
we have NcM(V];.; Ai) = V(A)/[V(A), A] and hence V(A)/y2c+1(A) is a homomorphic image
of J\/’CM(V]_[IG, Aj). On the other hand since V C N>, we have V(A)/Yac41(A) = V(A/Y2c+1(A)) =

V(]‘[le] Aj). This completes the proof.
(ii) An argument similar to (i), shows that N:M(V ]_[ie, Aj) = H¢/[Hy, cAl. Now since N;, €V C
N, Ves1(A)/Vinges1(A) is @ homomorphic image of NeM(V [];; Ai) and also

Ver(A) ( ) A
ymrert A T Ve () yc“(“

iel

Hence the result follows. O
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Remark 2.12. Let {A; | i € I} be a family of groups.

(i) If V is the variety of trivial groups, then Theorem 2.9 implies that I—[iXE,./\/CM(A,-) is a homo-
morphic image of N:M(j; Ap. In particular M([Tj,; A)) = [1ic; M(A;) which is a result of
Miller [15].

(ii) If V is the variety of nilpotent groups of class at most n, A, then main results of the second
author [9] are obtained by Theorem 2.9 and Corollary 2.11.

3. Nilpotent products of cyclic groups

In this section we use a result of the previous section and find a structure for the c-nilpotent mul-
tiplier of the group G = Zi iZ i Z, i int, where riy1 divides r; for all i, 1 <i<t—1, such
that (p,r1) =1 for any prime p less than or equal to n+ c. The proof relies on basic commutators [7]
and related results. We recall that the number of basic commutators of weight ¢ on n generators, de-
noted by x.(n), is determined by Witt formula [7]. Also, M. Hall proved that if F is the free group on
free generators x1,X2,...,Xr and cq, ..., c; are basic commutators of weight 1,2,...,n, on xq, ..., X,
then an arbitrary element f of F has a unique representation,

f=c'13'c§2 ...Cft mod Yu41(F).
In particular the basic commutators of weight n provide a basis for the free abelian group
Yn(F)/Vn+1(F) (see [7]).

The following theorem represents the elements of some nilpotent products of cyclic groups in
terms of basic commutators.

Theorem 3.1. (See [18].) Let A1, ..., A be cyclic groups of order o1, . . ., oy respectively, where if A; is infinite
cyclic, then a; = 0. Let a; generate A; and let G = A Yook A¢, where n is greater than or equal to 2. Suppose

that all the primes appearing in the factorizations of the «; are greater than or equal to n and uq, uy, ..., are
basic commutators of weight less than n, on the letters aq, ..., a.. Put Nj = i ifuj = aj of weight 1, and

Ni = gcd(aiy s - . ., )
ifai;, 1 < j <k, appears in u;. Then every element g of G can be uniquely expressed as
g=]]u™
where the m; are integers modulo N; (by gcd we mean the greatest common divisor).
The following theorem is an interesting consequence of Corollary 2.11.

Theorem 3.2. Let {A; | i € I} be a family of cyclic groups. Then
n n+c
(i) ifn > c, then NeM([Tig; A1) = vna1(TTid1 A
n n+c
(ii) if c = n, then NeM(ITig; Ai) = ver1 ([T A
Proof. (i) Put V =N, in Corollary 2.11 and deduce that

MM(]‘[A,») = Hp/[Hn, cAl.

iel
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On the other hand by Lemma 2.10, H, = Y41 (A) N [A,.A] = ¥Yn+1(A). Therefore
Yn+1(A) ( )
A; T A Ay = It Vn+1 Aj
(1_! ) a1 (), A~ e @) 7 l_!
(ii) The result follows as for (i). O

Now, we are in a position to state and prove the main result of this section.

Theorem 3.3. Let G = A ¥k Am4+ be the nth nilpotent product of cyclic groups such that A; = Z for
1<i<mand Apyj =Zy; andrjpq |1 forall 1 < j<t—1.1f (p,r1) = 1 for any prime p less than or equal
ton +c, then
; ~ 7(80) (81—8o) (8t—8&—1).
i) ifn>c, then NcM(G) 2280 @ Z, &---0Z; ;
(ii) if ¢ > n, then NeM(G) =200 @ 21710 g ... g ([~ T,

where fj, = Z?:] Xc+i(m+k) and g, = Zf:] Xn+i(Mm—+k) for 0 <k <tand Zﬁd) denotes the direct sum of d
copies of the cyclic group Z,.

Proof. (i) If n > c, then by Theorem 3.2, it is enough to find the structure of ;41 (]_[,61 Aj). Suppose
that A; = (a; |a Iy for 1<i<m+t such that o; =0 for 1 <i<m and @y =r1; for 1 <i<t. Also

let F be the free group generated by aq, ..., am4r and B be the set of all basic commutators of weight
1,2,...,c+n on the letters ay, ..., dm+:. Now define
D={u" |ueB and N; = ged(ctjy., ..., ) if ai; appears in u for 1< j <k}.

n+c
Then Theorem 3.1 implies that ]_[i;‘, Ai =F/(D)Yc4n+1(F) and so

n+c
- F
n Al =WYn -
yﬂ <U ) : +l<<D)VC+n+1(F)>
_ Vn+1(F)
(D)YYetn+1(F) N Y1 (F)
~ Va+1(F)/Yen1 (F)

(D) N Va1 (F)Yesns1(F)/ Vesnia (F)

It can be deduced from Hall Theorem that yy41(F)/Yc4n+1(F) is a free abelian group with a basis
B1 = {uy¥cqns1(F) | u e By}, where By is the set of all basic commutators of weight n+1,...,c+n
on ai,...,am+¢. Also, the uniqueness of the presentation of elements implies that the abelian group
(D) N Ynt1(F)Vetn+1(F)/Vetnt1(F) is free with a basis

t
E={Uyc+n+1(F))ueUD]} g

j=1
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where Dj is the set of all u'j, such that u is a basic commutator of weight n+1,...,c+n on
at,...,am4;j such that a, j appears in u. Also we have

C
IDjI =" Jnti(m+ ) = Yari(m+j—1) =g — gj1.

i=1

This completes the proof.
(ii) The proof is similar to (i). O

Note that the authors with F. Mohammadzadeh [8] by a different method presented a similar
structure for N:M(G), for ¢ > n with a weaker condition (p,r;) =1 for any prime p less than or
equal to n.

Remark 3.4. The condition rj;1 | r;, in the above theorem, simplifies the structure of the c-nilpotent
multiplier of G and gives a clear formula. One can use the above method and find the structure of
Nc:M(G) without the condition rj41 | rj, but with a more complex formula. For example, for a simple

case if G =12, % Z; where (p,r) = (p,s) =1 for any prime p less than or equal to n+c and (r, s) =d,
then

(i) if n > c, then N:M(G) = Z;Zizl Xnsi ),
(i) if ¢ > n, then N:M(G) = Z;Zizl Xe+i (@)
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