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The paper is devoted to finding a homomorphic image for the c-
nilpotent multiplier of the verbal product of a family of groups
with respect to a variety V when V ⊆ Nc or Nc ⊆ V . Also a
structure of the c-nilpotent multiplier of a special case of the
verbal product, the nilpotent product, of cyclic groups is given. In
fact, we present an explicit formula for the c-nilpotent multiplier

of the nth nilpotent product of the group G = Z
n∗ · · · n∗ Z

n∗ Zr1

n∗ · · ·
n∗ Zrt , where ri+1 divides ri for all i, 1 � i � t −1, and (p, r1) = 1 for
any prime p less than or equal to n+c, for all positive integers n, c.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and motivation

Let G = F/R be a free presentation of a group G . Then the Baer invariant of G with respect to the
variety Nc of nilpotent groups of class at most c � 1, denoted by Nc M(G), is defined to be

Nc M(G) = R ∩ γc+1(F )

[R, cF ] .

Nc M(G) is also called the c-nilpotent multiplier of G . Clearly if c = 1, then Nc = A is the variety of
all abelian groups and the Baer invariant of G with respect to this variety is

M(G) = R ∩ F ′

[R, F ] ,

which is the well-known Schur multiplier of G .
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It is important to find structures for the Schur multiplier and its generalization, the c-nilpotent
multiplier, of some famous products of groups. Determining these Baer invariants of a given group is
known to be very useful for the classification of groups into isoclinism classes (see [1]).

In 1907, Schur [17], using a representation method, found a structure for the Schur multiplier of
a direct product of two groups. Also, Wiegold [19] obtained the same result by some properties of
covering groups. In 1979 Moghaddam [13] found a formula for the c-nilpotent multiplier of a direct
product of two groups, where c + 1 is a prime number or 4. Also, in 1998 Ellis [2] extended the
formula for all c � 1. In 1997 the second author and Moghaddam [10] presented an explicit formula
for the c-nilpotent multiplier of a finite abelian group for any c � 1. It is known that the direct
product is a special case of the nilpotent product and we know that regular and verbal products are
generalizations of the nilpotent product.

In 1972, Haebich [6] found a formula for the Schur multiplier of a regular product of a family of
groups. Then the second author [9] extended the result to find a homomorphic image with a structure
similar to Haebich’s type for the c-nilpotent multiplier of a nilpotent product of a family of groups.

In section two, we extend the above result and find a homomorphic image for the c-nilpotent
multiplier of a verbal product of a family of groups with respect to a variety V when V ⊆ Nc or
Nc ⊆ V .

A special case of the verbal product of groups whose nilpotent multiplier has been studied more
than others is the nilpotent product of cyclic groups. In 1992, Gupta and Moghaddam [5] calculated

the c-nilpotent multiplier of the nilpotent dihedral group of class n, i.e. Gn ∼= Z2
n∗ Z2. (Note that in

2001 Ellis [3] remarked that there is a slip in the statement and gave the correct one.) In 2003,
Moghaddam, the second author and Kayvanfar [14] extended the previous result and calculated the
c-nilpotent multiplier of the nth nilpotent product of cyclic groups for n = 2,3,4 under some con-
ditions. Also, the second author and Parvizi [11,12] presented structures for some Baer invariants of
a free nilpotent group that is the nilpotent product of infinite cyclic groups. Finally the authors and
Mohammadzadeh [8] obtained an explicit formula for the c-nilpotent multiplier of the nth nilpo-

tent product of some cyclic groups G = Z
n∗ · · · n∗ Z

n∗ Zr1

n∗ · · · n∗ Zrt , where ri+1 divides ri for all i,
1 � i � t − 1, for c � n such that (p, r1) = 1 for any prime p less than or equal to n.

In section three, we give an explicit formula for the c-nilpotent multiplier of the above group G
when (p, r1) = 1 for any prime p less than or equal to n + c, for all positive integers c, n.

2. Verbal products

A group G is said to be a regular product of its subgroups Ai , i ∈ I , where I is an ordered set, if the
following two conditions hold:

(i) G = 〈Ai | i ∈ I〉;

(ii) Ai ∩ Âi = 1 for all i ∈ I , where Âi = 〈A j | j ∈ I, j 
= i〉G .

Definition 2.1. Consider the map

ψ :
∗∏

i∈I

Ai →
×∏

i∈I

Ai,

a1a2 . . .an �→ (a1,a2, . . . ,an),

which is a natural map from the free product of {Ai}i∈I on to the direct product of {Ai}i∈I . Clearly its
kernel is the normal closure of

〈[Ai, A j]
∣∣ i, j ∈ I, i 
= j

〉
in the free product A = ∏∗

i∈I Ai . It is denoted by [A A
i ] and called the Cartesian subgroup of the free

product (see [16] for the properties of Cartesian subgroups).
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The following theorem gives a characterization of a regular product.

Theorem 2.2. (See Golovin [4].) Suppose that a group G is generated by a family {Ai | i ∈ I} of its subgroups,
where I is an ordered set. Then G is a regular product of the Ai if and only if every element of G can be written
uniquely as a product

a1a2 . . .anu,

where 1 
= ai ∈ Aλi , λ1 < · · · < λn and u ∈ [AG
i ] = 〈[AG

i , AG
j ] | i, j ∈ I, i 
= j〉.

Definition 2.3. Let V be a variety of groups defined by a set of laws V . Then the verbal product of a
family of groups {Ai}i∈I associated with the variety V is defined to be

V
∏
i∈I

Ai =
∏∗

i∈I Ai

V (A) ∩ [A A
i ] .

The verbal product is also known as varietal product or simply V-product. If V is the variety
of all groups, then the corresponding verbal product is the free product; if V = A is the variety of
all abelian groups, then the verbal product is the direct product and if V = Nc is the variety of all
nilpotent groups of class at most c, then the verbal product will be the nilpotent product.

Let {Ai | i ∈ I} be a family of groups and

1 → Ri → Fi
θi→ Ai → 1

be a free presentation for Ai . We denote by θ the natural homomorphism from the free product
F = ∏∗

i∈I F i onto A = ∏∗
i∈I Ai induced by the θi . Also we assume that the group G is the verbal

product of {Ai}i∈I associated with the variety V . If ψ is the natural homomorphism from A onto G
induced by the identity map on each Ai , then we have the sequence

F =
∗∏

i∈I

F i
θ→ A =

∗∏
i∈I

Ai
ψv→ G = V

∏
i∈I

Ai → 1.

The following notation will be used throughout this section.

Notation 2.4.

(i) D1 = ∏
i 
= j[Ri, F j]F ;

(ii) Ec = D1 ∩ γc+1(F );
(iii) Dc = ∏

∃ j s.t. μ j 
=i[Ri, Fμ1 , . . . , Fμc ]F ;

(iv) K v = V (F ) ∩ [F F
i ];

(v) Kc = γc+1(F ) ∩ [F F
i ].

Let H v be the kernel of ψv and R be the kernel of ψv ◦ θ . It is clear that R is actually the inverse
image of H v in F under θ , where H v = V (A) ∩ [A A

i ] by the definition of the verbal product. Put
Hc = γc+1(A) ∩ [A A

i ], then an immediate consequence is the following lemma.

Lemma 2.5. With the above notation we have

(i) θ(K v ) = H v and θ(Kc) = Hc ;
(ii) G = F/R and R = ∏

i∈I R F
i K v = (

∏
i∈I Ri)D1 K v .
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Proof. (i) This follows from the definition of θ .
(ii) It is easy to see that ker θ = ∏

i∈I R F
i . On the other hand, since θ(K v ) = kerψv , we have

R = (ker θ)K v = ∏
i∈I R F

i K v . Also for all r ∈ Ri and f ∈ F , r f = r[r, f ]. This implies that
∏

i∈I R F
i =∏

i∈I Ri[Ri, F ]. Since [Ri, Fi] ⊆ Ri ,
∏

i∈I R F
i = ∏

i∈I Ri D1. �
We now prove some lemmas to compute the c-nilpotent multiplier of G .

Lemma 2.6. Keeping the above notation we have

(i) [R, cF ] = (
∏

i∈I [Ri, cF i])Dc[K v , cF ].
(ii) If V (F ) ⊆ γc+1(F ), then R ∩ γc+1(F ) = ∏

i∈I (Ri ∩ γc+1(Fi))Ec K v .

(iii) If γc+1(F ) ⊆ V (F ), then R ∩ γc+1(F ) = ∏
i∈I (Ri ∩ γc+1(Fi))Ec Kc .

Proof. (i)

[R, cF ] =
[∏

i∈I

R F
i K v , cF

]

=
∏
i∈I

[Ri, cF ]F [K v , cF ]

=
(∏

i∈I

[Ri, cFi]
)

Dc[K v , cF ].

(ii) Let g ∈ R ∩ γc+1(F ). Then g = rλ1 . . . rλt dk by Lemma 2.5, where rλi ∈ Rλi , d ∈ D1 and k ∈ K v .
Now consider the natural homomorphism

ϕ : F =
∗∏

i∈I

F i →
×∏

i∈I

F i .

Since g ∈ γc+1(F ), ϕ(g) = (rλ1 , . . . , rλt ) ∈ γc+1(
∏×

i∈I F i) = ∏×
i∈I γc+1(Fi). Therefore rλi ∈ γc+1(Fλi )∩ Rλi

and then dk ∈ γc+1(F ) ∩ [F F
i ]. Now since k ∈ V (F ) ⊆ γc+1(F ), we have d ∈ γc+1(F ) ∩ D1 = Ec and so

the result follows.
(iii) Since Kc ⊆ K v ,

∏
i∈I (Ri ∩ γc+1(Fi))Ec Kc ⊆ R ∩ γc+1(F ). For the reverse inclusion, similar to

part (i), dk ∈ γc+1(F )∩[F F
i ]. Therefore R ∩γc+1(F ) ⊆ ∏

i∈I (Ri ∩γc+1(Fi))Kc . Now the inclusion Ec ⊆ Kc

shows that the equality (iii) holds. �
Lemma 2.7. With the above notation, let ϕc : F → F/Ec be the natural homomorphism. Then ϕc(

∏
i∈I (Ri ∩

γc+1(Fi))K v ) is the direct product of its subgroups ϕc(K v ) and ϕc(Ri ∩ γc+1(Fi)), i ∈ I .

Proof. The Three Subgroups Lemma shows that

[
Ri ∩ γc+1(Fi), K v

] ⊆ Ec for all i ∈ I,

and

[
Ri ∩ γc+1(Fi), R j ∩ γc+1(F j)

] ⊆ Ec for all i, j ∈ I, i 
= j.

So we have

[
ϕc

(
Ri ∩ γc+1(Fi)

)
,ϕc(K v )

] = 1 for all i ∈ I,
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and

[
ϕc

(
Ri ∩ γc+1(Fi)

)
,ϕc

(
R j ∩ γc+1(F j)

)] = 1 for all i, j ∈ I, i 
= j.

Moreover, by Theorem 2.2 we conclude that

ϕc
(

Ri ∩ γc+1(Fi)
) ∩

(∏
i 
= j

ϕc
(

R j ∩ γc+1(F j)
)
ϕc(K v )

)
= 1.

Now the result follows by the definition of the direct product. �
Lemma 2.8. With the previous notation,

(i) If V (F ) ⊆ γc+1(F ), then ϕc(K v )/ϕc([K v , cF ]) ∼= H v/[H v , cA].
(ii) If γc+1(F ) ⊆ V (F ), then ϕc(Kc)/ϕc([Kc, cF ]) ∼= Hc/[H v , cA].

Proof. (i) If V (F ) ⊆ γc+1(F ), then

ϕc(K v )

ϕc([K v , cF ])
∼= K v Ec

[K v , cF ]Ec

∼= K v

K v ∩ [K v , cF ]Ec
.

On the other hand

θ(K v )

θ([K v , cF ])
∼= K v ker θ

[K v , cF ]ker θ
∼= K v

K v ∩ [K v , cF ]ker θ
∼= K v

K v ∩ [K v , cF ]D1
∏

i∈I Ri
.

Now Theorem 2.2 and definition of Ec imply that

θ(K v )

θ([K v , cF ])
∼= K v

K v ∩ [K v , cF ]Ec
.

Therefore by Lemma 2.5, we conclude that

ϕc(K v)

ϕc([K v , cF ])
∼= θ(K v )

θ([K v , cF ])
∼= H v

[H v , cA] .

(ii) The proof is similar to (i). �
Now we are ready to state and prove the main result of this section.

Theorem 2.9. With the above notation,

(i) If Nc ⊆ V , then
∏×

i∈I Nc M(Ai) × H v/[H v , cA] is a homomorphic image of Nc M(V
∏

i∈I Ai), and if
V

∏
i∈I Ai is finite, then the above structure is isomorphic to a subgroup of Nc M(V

∏
i∈I Ai).

(ii) If V ⊆ Nc , then
∏×

i∈I Nc M(Ai) × Hc/[H v , cA] is a homomorphic image of Nc M(V
∏

i∈I Ai), and if
V

∏
i∈I Ai is finite, then the above structure is isomorphic to a subgroup of Nc M(V

∏
i∈I Ai).

Proof. (i) By Lemma 2.6(i), (ii)

Nc M

(
V

∏
Ai

)
∼= R ∩ γc+1(F )

[R, cF ]
∼=

∏
i∈I (Ri ∩ γc+1(Fi))Ec K v∏
i∈I [Ri, cFi]Dc[K v , cF ] .
i∈I
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Therefore there is a natural epimorphism from Nc M(V
∏

i∈I Ai) to∏
i∈I (Ri ∩ γc+1(Fi))Ec K v∏

i∈I [Ri, cFi]Ec[K v , cF ]
∼= ϕc(

∏
i∈I (Ri ∩ γc+1(Fi))K v )

ϕc(
∏

i∈I [Ri, cFi][K v , cF ]) .

Lemma 2.7 and the fact that ϕc([K v , cF ]) ⊆ ϕc(K v ) and ϕc([Ri, cFi]) ⊆ ϕc(Ri ∩ γc+1(Fi)) imply that

ϕc(
∏

i∈I (Ri ∩ γc+1(Fi))K v )

ϕc(
∏

i∈I [Ri, cFi][K v , cF ])
∼=

×∏
i∈I

ϕc(Ri ∩ γc+1(Fi))

ϕc([Ri, cFi]) × ϕc(K v)

ϕc([K v , cF ]) .

It is straightforward to see that

ϕc(Ri ∩ γc+1(Fi))

ϕc([Ri, cFi])
∼= Ri ∩ γc+1(Fi)

[Ri, cFi]
by Theorem 2.2. Therefore, the result holds by Lemma 2.8(i).

(ii) By an argument similar to (i), we obtain the result. �
We need the following lemma whose proof is straightforward.

Lemma 2.10. Let {Ai | i ∈ I} be a family of groups. Put A = ∏∗
i∈I Ai . Then for all integers m � 2,

γm(A) =
∏
i∈I

γm(Ai)
(
γm(A) ∩ [

A A
i

])
.

In particular if the Ai are cyclic, then γm(A) = γm(A) ∩ [A A
i ].

The following corollary is an interesting consequence of Theorem 2.9 for cyclic groups.

Corollary 2.11. Let {Ai | i ∈ I} be a family of cyclic groups. Then

(i) If Nc ⊆ V , then Nc M(V
∏

i∈I Ai) ∼= H v/[H v , cA]. Moreover if V ⊆N2c , then V (
∏2c∗

i∈I Ai) is a homomor-
phic image of Nc M(V

∏
i∈I Ai).

(ii) If V ⊆ Nc , then Nc M(V
∏

i∈I Ai) ∼= Hc/[H v , cA]. Moreover if Nm ⊆ V , then γc+1(
∏m+c∗

i∈I Ai) is a homo-
morphic image of Nc M(V

∏
i∈I Ai).

Proof. (i) Since the Ai are cyclic groups and the Ri have no commutators, it is concluded that
Dc = Ec . So the epimorphism in the proof of Theorem 2.9, is actually an isomorphism. Also
Nc M(Ai) = 1, therefore Nc M(V

∏
i∈I Ai) ∼= H v/[H v , cA]. Now suppose Nc ⊆ V ⊆ N2c . The inclusion

V (A) ⊆ γc+1(A) and Lemma 2.10 imply that V (A) ⊆ [A A
i ] and thus H v = V (A) ∩ [A A

i ] = V (A). So
we have Nc M(V

∏
i∈I Ai) = V (A)/[V (A), cA] and hence V (A)/γ2c+1(A) is a homomorphic image

of Nc M(V
∏

i∈I Ai). On the other hand since V ⊆ N2c , we have V (A)/γ2c+1(A) = V (A/γ2c+1(A)) =
V (

∏2c∗
i∈I Ai). This completes the proof.

(ii) An argument similar to (i), shows that Nc M(V
∏

i∈I Ai) ∼= Hc/[H v , cA]. Now since Nm ⊆ V ⊆
Nc , γc+1(A)/γm+c+1(A) is a homomorphic image of Nc M(V

∏
i∈I Ai) and also

γc+1(A)

γm+c+1(A)
= γc+1

(
A

γm+c+1(A)

)
= γc+1

( m+c∗∏
i∈I

Ai

)
.

Hence the result follows. �
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Remark 2.12. Let {Ai | i ∈ I} be a family of groups.

(i) If V is the variety of trivial groups, then Theorem 2.9 implies that
∏×

i∈I Nc M(Ai) is a homo-
morphic image of Nc M(

∏∗
i∈I Ai). In particular M(

∏∗
i∈I Ai) = ∏×

i∈I M(Ai) which is a result of
Miller [15].

(ii) If V is the variety of nilpotent groups of class at most n, Nn , then main results of the second
author [9] are obtained by Theorem 2.9 and Corollary 2.11.

3. Nilpotent products of cyclic groups

In this section we use a result of the previous section and find a structure for the c-nilpotent mul-

tiplier of the group G = Z
n∗ · · · n∗ Z

n∗ Zr1

n∗ · · · n∗ Zrt , where ri+1 divides ri for all i, 1 � i � t − 1, such
that (p, r1) = 1 for any prime p less than or equal to n + c. The proof relies on basic commutators [7]
and related results. We recall that the number of basic commutators of weight c on n generators, de-
noted by χc(n), is determined by Witt formula [7]. Also, M. Hall proved that if F is the free group on
free generators x1, x2, . . . , xr and c1, . . . , ct are basic commutators of weight 1,2, . . . ,n, on x1, . . . , xr ,
then an arbitrary element f of F has a unique representation,

f = cβ1
1 cβ2

2 . . . cβt
t mod γn+1(F ).

In particular the basic commutators of weight n provide a basis for the free abelian group
γn(F )/γn+1(F ) (see [7]).

The following theorem represents the elements of some nilpotent products of cyclic groups in
terms of basic commutators.

Theorem 3.1. (See [18].) Let A1, . . . , At be cyclic groups of order α1, . . . ,αt respectively, where if Ai is infinite

cyclic, then αi = 0. Let ai generate Ai and let G = A1
n∗ · · · n∗ At , where n is greater than or equal to 2. Suppose

that all the primes appearing in the factorizations of the αi are greater than or equal to n and u1, u2, . . . , are
basic commutators of weight less than n, on the letters a1, . . . ,at . Put Ni = αi j if ui = ai j of weight 1, and

Ni = gcd(αi1 , . . . ,αik )

if ai j , 1 � j � k, appears in ui . Then every element g of G can be uniquely expressed as

g =
∏

umi
i ,

where the mi are integers modulo Ni (by gcd we mean the greatest common divisor).

The following theorem is an interesting consequence of Corollary 2.11.

Theorem 3.2. Let {Ai | i ∈ I} be a family of cyclic groups. Then

(i) if n � c, then Nc M(
∏n∗

i∈I Ai) ∼= γn+1(
∏n+c∗

i∈I Ai);

(ii) if c � n, then Nc M(
∏n∗

i∈I Ai) ∼= γc+1(
∏n+c∗

i∈I Ai).

Proof. (i) Put V =Nn in Corollary 2.11 and deduce that

Nc M

( n∗∏
Ai

)
∼= Hn/[Hn, cA].
i∈I
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On the other hand by Lemma 2.10, Hn = γn+1(A) ∩ [A A
i ] = γn+1(A). Therefore

Nc M

( n∗∏
i∈I

Ai

)
∼= γn+1(A)

[γn+1(A), cA] = γn+1

(
A

γn+c+1(A)

)
= γn+1

( n+c∗∏
i∈I

Ai

)
.

(ii) The result follows as for (i). �
Now, we are in a position to state and prove the main result of this section.

Theorem 3.3. Let G = A1
n∗ · · · n∗ Am+t be the nth nilpotent product of cyclic groups such that Ai ∼= Z for

1 � i � m and Am+ j ∼= Zr j and r j+1 | r j for all 1 � j � t − 1. If (p, r1) = 1 for any prime p less than or equal
to n + c, then

(i) if n � c, then Nc M(G) ∼= Z(g0) ⊕ Z(g1−g0)
r1 ⊕ · · · ⊕ Z(gt−gt−1)

rt ;

(ii) if c � n, then Nc M(G) ∼= Z( f0) ⊕ Z( f1− f0)
r1 ⊕ · · · ⊕ Z( ft− ft−1)

rt ,

where fk = ∑n
i=1 χc+i(m +k) and gk = ∑c

i=1 χn+i(m +k) for 0 � k � t and Z(d)
r denotes the direct sum of d

copies of the cyclic group Zr .

Proof. (i) If n � c, then by Theorem 3.2, it is enough to find the structure of γn+1(
∏n+c∗

i∈I Ai). Suppose
that Ai = 〈ai | aαi

i 〉 for 1 � i � m + t such that αi = 0 for 1 � i � m and αm+i = ri for 1 � i � t . Also
let F be the free group generated by a1, . . . ,am+t and B be the set of all basic commutators of weight
1,2, . . . , c + n on the letters a1, . . . ,am+t . Now define

D = {
uNi

∣∣ u ∈ B and Ni = gcd(αi1 , . . . ,αik ) if ai j appears in u for 1 � j � k
}
.

Then Theorem 3.1 implies that
∏n+c∗

i∈I Ai = F/〈D〉γc+n+1(F ) and so

γn+1

( n+c∗∏
i∈I

Ai

)
= γn+1

(
F

〈D〉γc+n+1(F )

)

= γn+1(F )

〈D〉γc+n+1(F ) ∩ γn+1(F )

∼= γn+1(F )/γc+n+1(F )

(〈D〉 ∩ γn+1(F ))γc+n+1(F )/γc+n+1(F )
.

It can be deduced from Hall Theorem that γn+1(F )/γc+n+1(F ) is a free abelian group with a basis
B̄1 = {uγc+n+1(F ) | u ∈ B1}, where B1 is the set of all basic commutators of weight n + 1, . . . , c + n
on a1, . . . ,am+t . Also, the uniqueness of the presentation of elements implies that the abelian group
(〈D〉 ∩ γn+1(F ))γc+n+1(F )/γc+n+1(F ) is free with a basis

Ē =
{

uγc+n+1(F )

∣∣∣ u ∈
t⋃

j=1

D j

}
,
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where D j is the set of all ur j , such that u is a basic commutator of weight n + 1, . . . , c + n on
a1, . . . ,am+ j such that am+ j appears in u. Also we have

|D j | =
c∑

i=1

χn+i(m + j) − χn+i(m + j − 1) = g j − g j−1.

This completes the proof.
(ii) The proof is similar to (i). �
Note that the authors with F. Mohammadzadeh [8] by a different method presented a similar

structure for Nc M(G), for c � n with a weaker condition (p, r1) = 1 for any prime p less than or
equal to n.

Remark 3.4. The condition r j+1 | r j , in the above theorem, simplifies the structure of the c-nilpotent
multiplier of G and gives a clear formula. One can use the above method and find the structure of
Nc M(G) without the condition r j+1 | r j , but with a more complex formula. For example, for a simple

case if G = Zr
n∗ Zs where (p, r) = (p, s) = 1 for any prime p less than or equal to n + c and (r, s) = d,

then

(i) if n � c, then Nc M(G) ∼= Z
(
∑c

i=1 χn+i(2))

d ;

(ii) if c � n, then Nc M(G) ∼= Z
(
∑n

i=1 χc+i(2))

d .
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