11th Iranian Physical Chemistry Seminar University of Mohaghegh Ardabili, July 21-24, 2008

Computation of Some Thermodynamic Properties of He-Kr Mixture Using Molecular Dynamics Simulation

Majid Namayandeh*, Elaheh K. Goharshadi, and Mohsen Abbaspour

Dept. of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran

majid_namayandeh@yahoo.com

Introduction

In contrast to the large literature on two-body potentials, three-body potentials have been received relatively little attention. Most works reported in the literature have been focused on three-body dispersion as calculated by Axilord and Teller [1]. Wang and Sadus [2] showed there is a simple and accurate relationship between the two-body (U_2) and three-body (U_3) potential energies of a fluid as:

$$U_3 = -\frac{0.85 \,\upsilon \rho U_2}{\varepsilon \sigma^6} \tag{1}$$

where v is the nonadditive coefficient, $\rho = N/V$ is the number density, ε is the potential well depth, and σ is the distance at which potential becomes zero. U_2 and U_3 stand for two-body and three-body potential, respectively. Hence, the effect of three-body interactions can be incorporated into a simulation involving pair-interactions without any additional computational cost.

The purpose of present work is to form the MD simulation to obtain internal energy, pressure, and diffusion coefficient of He-Kr mixture at wide range of temperatures and densities using molecular dynamics (MD) simulation. We have used (6-12) Lennard-Jones (LJ) potential and HFD-like potential [3] as two-body potentials. We have also incorporated the three-body interactions using the relation proposed by Wang and Sadus [2].

We have also applied the following formula proposed by Smit et al. [4] for calculating the configuration pressure when the total potential (two-body plus three-body interaction potential) is used.

$$P_{conf} = -\left\langle \sum_{i < j} \sum \frac{1}{3V} \frac{dU_2(r_{ij})}{dr_{ij}} r_{ij} \right\rangle + \left\langle \sum_{i < j} \sum \frac{2v\rho}{9V} \frac{dU_2(r_{ij})}{\epsilon \sigma^6} r_{ij} \right\rangle - \left\langle \frac{2v\rho^2}{3\epsilon\sigma^6} U_2 \right\rangle$$
 where

11th Iranian Physical Chemistry Seminar University of Mohaghegh Ardabili, July 21-24, 2008

the angle bracket represent ensemble averages.

In order to incorporate the quantum effects, we have also used the FH potential [5] with two-body potentials as:

$$U_{FH}(r) = U_2(r) + \frac{\beta \eta^2}{24\mu} \left[U_2''(r) + 2\frac{U_2'(r)}{r} \right]$$
 (3)

where $\beta=1/k_BT$, μ is the reduced mass, and the prime and the double prime are the first and second r derivatives, respectively.

As Eq. (3) shows, the FH potential appears as the sum of the classical two-body, $U_2(r)$ and a quantum correction term that depends on the mass and the temperature.

KEYWORDS Potential energy function; Molecular dynamics simulation; Quantum corrections; Three-Body interactions; Diffusion coefficient

Results

We have performed the MID simulation to obtain internal energy, pressure, and diffusion coefficient of helium-krypton mixtures at different temperatures and densities using Lennard-Jones (LJ) and HFD-like potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The contribution of three-body interactions using an accurate simple relationship reported by Wang and Sadus between two-body and three-body interactions of binary mixtures has been also incorporated in our simulations. Our results for pressure show a very good agreement with the experimental data. Figure 1 shows typical results for the pressure of He-Kr mixture at 298.18 K and x_{He} =0.6. In this figure Q stands for quantum correction. There is a good overall agreement between our simulated values and experiment.

Figure 1. The pressure of He-Kr mixture at 298.15 and $x_{\rm He}$ =0.6

11th Iranian Physical Chemistry Seminar University of Mohaghegh Ardabili, July 21-24, 2008

Figure 2 shows the comparison between the simulated results of internal energy at the similar condition of Fig 1. Table 1 shows our results for the diffusion coefficient for He-Kr mixture at 300 K.

Figure 2. The internal energy of He-Kr mixture at 298.15 and $x_{\rm He}$ =0.6

Table 1. Our calculated values of diffusion coefficients of helium-krypton mixtures using different two-body and total potentials at 300 K

	Potentials at 500 K			as a second			
X Kr	P (atm)	D_{exp} (cm ² s ⁻¹)	D two-body (cm ² s ⁻¹)				D (total) (cm ² s ⁻¹)
0.1313			LJ	QLJ	HFD-like	QHFD-like	
0.1313	0.8934	0.7115	0.1123	0.1122	0.1123		QHFD-like
0.2100	0.8541	0.7487	0.1377	0.1377		0.1123	0.1121
0.3520	0.8806	0.7330			0.1377	0.1377	0.1377
0.8422	N	0.7330	0.2123	0.2123	0.2123	0.2120	0.2120
0.0422	0.8350	0.7815	0.4711	0.4715	0.4713		0.2120
					0.4713	0.4714	0.4714

References:

- 1. Axilrod BM, Teller E (1943) J Chem Phys 11: 299
- 2. Wang L. Sadus RJ (2006) J Chem Phys 125: 144509
- 3. Goharshadi EK, Moinossadati M (2002) Indian J Chem A 41: 2500
- 4. Smit B, Hauschild T, Prausnitz M (1992) Mol Phys 77: 1021
- 5. Feynman RP, Hibbs A (1965) Quantum mechanics and path-integral. McGraw-Hill, New York

-